Suppr超能文献

一种新颖的流水线,采用深度多注意通道网络,通过荧光显微镜对转移细胞进行自动检测。

A novel pipeline employing deep multi-attention channels network for the autonomous detection of metastasizing cells through fluorescence microscopy.

机构信息

School of Electrical and Electronic Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in-silico, Medicine, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, and Department of Computer science, Sheffield, UK; Department of Psychiatry, Cambridge University, Cambridge, UK.

Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.

出版信息

Comput Biol Med. 2024 Oct;181:109052. doi: 10.1016/j.compbiomed.2024.109052. Epub 2024 Aug 30.

Abstract

Metastasis driven by cancer cell migration is the leading cause of cancer-related deaths. It involves significant changes in the organization of the cytoskeleton, which includes the actin microfilaments and the vimentin intermediate filaments. Understanding how these filament change cells from normal to invasive offers insights that can be used to improve cancer diagnosis and therapy. We have developed a computational, transparent, large-scale and imaging-based pipeline, that can distinguish between normal human cells and their isogenically matched, oncogenically transformed, invasive and metastasizing counterparts, based on the spatial organization of actin and vimentin filaments in the cell cytoplasm. Due to the intricacy of these subcellular structures, manual annotation is not trivial to automate. We used established deep learning methods and our new multi-attention channel architecture. To ensure a high level of interpretability of the network, which is crucial for the application area, we developed an interpretable global explainable approach correlating the weighted geometric mean of the total cell images and their local GradCam scores. The methods offer detailed, objective and measurable understanding of how different components of the cytoskeleton contribute to metastasis, insights that can be used for future development of novel diagnostic tools, such as a nanometer level, vimentin filament-based biomarker for digital pathology, and for new treatments that significantly can increase patient survival.

摘要

癌细胞迁移导致的转移是癌症相关死亡的主要原因。它涉及细胞骨架组织的重大变化,包括肌动蛋白微丝和中间丝。了解这些细丝如何使细胞从正常变为侵袭性,提供了可以用于改善癌症诊断和治疗的见解。我们开发了一种计算、透明、大规模和基于成像的管道,可以根据细胞质中肌动蛋白和中间丝的空间组织,区分正常人类细胞与其同基因匹配、致癌转化、侵袭和转移的对应物。由于这些亚细胞结构的复杂性,手动注释不容易自动化。我们使用了成熟的深度学习方法和我们新的多注意通道架构。为了确保网络具有高度的可解释性,这对于应用领域至关重要,我们开发了一种可解释的全局可解释方法,将总细胞图像的加权几何平均值与其局部 GradCam 分数相关联。这些方法提供了关于细胞骨架的不同成分如何促进转移的详细、客观和可衡量的理解,这些见解可用于开发新的诊断工具,例如基于纳米级中间丝的数字病理学生物标志物,以及用于显著提高患者生存率的新治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验