State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany.
Sci Total Environ. 2024 Nov 15;951:175867. doi: 10.1016/j.scitotenv.2024.175867. Epub 2024 Aug 30.
Nitrogen (N) and carbon (C) inputs substantially affect soil microbial functions. However, the influences of long-term N and C additions on soil microbial resource limitation and heterotrophic respiration-fundamental microbial functional traits-remain unclear, impeding the understanding of how soil C dynamics respond to global change. In this study, the responses of soil microbial resource limitation and heterotrophic respiration (Rh) to 7-year N and biochar (BC) additions in a subtropical Moso bamboo (Phyllostachys edulis) plantation were investigated. We used eight treatments: Control, no N and BC addition; N30, 30 kg N (ammonium nitrate)·hm·a; N60, 60 kg N·hm·a; N90, 90 kg N·hm·a; BC20, 20 t BC (originating from Moso bamboo chips) hm; N30 + BC20, 30 kg N·hm·a + 20 t BC hm; N60 + BC20, 60 kg N·hm·a + 20 t BC hm; and N90 + BC20, 90 kg N·hm·a + 20 t BC hm. Soil microbes were co-limited by N and phosphorus (P) and not limited by C in the control treatments. Long-term N addition enhanced soil microbial N and P limitation but significantly reduced soil Rh by 15.1 %-20.0 % relative to that in the control treatments. BC amendment alleviated soil microbial N and P limitation and significantly decreased C use efficiency by 10.9 %-42.1 % but increased Rh by 33.6 %-91.6 % in the long-term N-free and N-supplemented treatments (P < 0.05). Soil C- and N-acquisition enzyme activities were the dominant drivers of soil microbial resource limitation. Furthermore, microbial resource limitation was a more reliable predictor of Rh than soil resources or microbial biomass. The results suggested that long-term N and BC additions affect Rh by regulating microbial resource limitation, highlighting its significance in understanding soil C cycling under environmental change.
氮(N)和碳(C)输入会极大地影响土壤微生物功能。然而,长期 N 和 C 添加对土壤微生物资源限制和异养呼吸(基本微生物功能特征)的影响仍不清楚,这阻碍了我们理解土壤 C 动态如何响应全球变化。在这项研究中,我们调查了亚热带毛竹(Phyllostachys edulis)人工林土壤微生物资源限制和异养呼吸(Rh)对 7 年 N 和生物炭(BC)添加的响应。我们使用了 8 种处理:对照,不添加 N 和 BC;N30,30kgN(硝酸铵)·hm·a;N60,60kgN·hm·a;N90,90kgN·hm·a;BC20,20tBC(源自毛竹片)hm;N30+BC20,30kgN·hm·a+20tBC hm;N60+BC20,60kgN·hm·a+20tBC hm;和 N90+BC20,90kgN·hm·a+20tBC hm。在对照处理中,土壤微生物受到 N 和磷(P)的共同限制,而不受 C 的限制。长期 N 添加增强了土壤微生物 N 和 P 的限制,但相对于对照处理,土壤 Rh 显著降低了 15.1%-20.0%。BC 处理缓解了土壤微生物 N 和 P 的限制,同时显著降低了土壤 C 利用效率 10.9%-42.1%,但增加了长期 N 免费和 N 补充处理中的 Rh 33.6%-91.6%(P<0.05)。土壤碳和氮获取酶活性是土壤微生物资源限制的主要驱动因素。此外,微生物资源限制是 Rh 的更可靠预测因子,而不是土壤资源或微生物生物量。结果表明,长期 N 和 BC 添加通过调节微生物资源限制来影响 Rh,这突出了它在理解环境变化下土壤 C 循环中的重要性。