Wang Ruonan, Liu Jingjing, Fang Weiwei, Zhong Qin
School of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):767-775. doi: 10.1016/j.jcis.2024.08.207. Epub 2024 Aug 30.
Photocatalytic reduction of CO in pure HO media to produce chemicals presents an appealing avenue for simultaneously alleviating energy and environmental crises. However, the rapid recombination of photogenerated charge carriers presents a significant challenge in this promising field. Heterojunction engineering has emerged as an effective approach to address this dilemma. Here, by decorating 2D NiAl-layered double hydroxides (NAL) onto bismuth oxybromide (BOB), we have created a S-scheme heterojunction (NB composite). This catalyst affords CO-to-CO yields of 102.30 μmol g with a selectivity of 100 %. Ultraviolet photoelectron spectroscopy (UPS) and in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) reveal that charge transfer occurs efficiently from BOB to 2D-NAL upon light irradiation. The designed NB heterojunction achieves 7.3-fold and 2.1-fold increase in the internal electric field strength compared to bare 2D-NAL and BOB, respectively, which should be accountable for the improved charge migration. Additionally, pulsed chemisorption and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) show the presence of multiple carbonate intermediates with activated OCO bonds upon NB composite, with *CO being identified as the most crucial species for CO production.
在纯水性介质中通过光催化还原一氧化碳来生产化学品,为同时缓解能源和环境危机提供了一条颇具吸引力的途径。然而,光生电荷载流子的快速复合给这个充满前景的领域带来了重大挑战。异质结工程已成为解决这一困境的有效方法。在此,通过在溴氧化铋(BOB)上修饰二维镍铝层状双氢氧化物(NAL),我们制备了一种S型异质结(NB复合材料)。该催化剂实现了一氧化碳到一氧化碳的产率为102.30 μmol g,选择性为100%。紫外光电子能谱(UPS)和原位辐照X射线光电子能谱(ISI-XPS)表明,光照时电荷从BOB有效地转移到二维NAL上。所设计的NB异质结的内电场强度分别比裸二维NAL和BOB提高了7.3倍和2.1倍,这应该是电荷迁移改善的原因。此外,脉冲化学吸附和原位漫反射红外傅里叶变换光谱(DRIFTS)表明,NB复合材料上存在多个具有活化OCO键的碳酸盐中间体,其中*CO被确定为一氧化碳生成的最关键物种。