Wang Hongwei, Yang Tsung-Cheng, Zheng Hao, Jiang Zeyi, Yang Chia-Min, Lai Nien-Chu
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):806-817. doi: 10.1016/j.jcis.2024.08.191. Epub 2024 Aug 25.
Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N-FeP NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N sites, while the presence of FeP NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N-FeP NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N/NPC achieves a peak power density of 140.3 mW cm, outperforming that of Pt/C-based ZAB (91.8 mW cm) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.
过渡金属基纳米颗粒(NPs)正在成为锌空气电池(ZAB)中催化氧还原反应(ORR)的铂的潜在替代品。然而,在纳米颗粒制备过程中单原子部分的同时共存是不可避免的,并且催化剂的结构复杂性对识别真正的活性位点构成了巨大挑战。在此,通过采用原位和非原位XAS分析,我们证明了在N、P共掺杂多孔碳(简称为Fe-N-FeP NPs/NPC)中存在单原子部分和磷化铁纳米颗粒,并确定ORR主要通过原子分散的Fe-N位点进行,而FeP纳米颗粒的存在通过降低位点利用率和阻碍反应物的传质发挥抑制作用。单原子催化剂Fe-N/NPC在碱性条件下的半波电位为0.873 V,超过了Fe-N-FeP NPs/NPC(0.858 V)和商业Pt/C(0.842 V)。此外,基于Fe-N/NPC的锌空气电池实现了140.3 mW cm的峰值功率密度,优于基于Pt/C的锌空气电池(91.8 mW cm),并表现出优异的长期稳定性。这项研究为识别负载型ORR催化剂的真正活性位点提供了见解,并为开发用于高能量密度金属空气电池的高效、非贵金属基催化剂提供了一种方法。