Suppr超能文献

通过测量一致因果邻域干预的置信度来预测药物-靶标相互作用。

Predicting drug-target interactions by measuring confidence with consistent causal neighborhood interventions.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Graduate School of Informatic, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.

出版信息

Methods. 2024 Nov;231:15-25. doi: 10.1016/j.ymeth.2024.08.009. Epub 2024 Aug 30.

Abstract

Predicting drug-target interactions (DTI) is a crucial stage in drug discovery and development. Understanding the interaction between drugs and targets is essential for pinpointing the specific relationship between drug molecules and targets, akin to solving a link prediction problem using information technology. While knowledge graph (KG) and knowledge graph embedding (KGE) methods have been rapid advancements and demonstrated impressive performance in drug discovery, they often lack authenticity and accuracy in identifying DTI. This leads to increased misjudgment rates and reduced efficiency in drug development. To address these challenges, our focus lies in refining the accuracy of DTI prediction models through KGE, with a specific emphasis on causal intervention confidence measures (CI). These measures aim to assess triplet scores, enhancing the precision of the predictions. Comparative experiments conducted on three datasets and utilizing 9 KGE models reveal that our proposed confidence measure approach via causal intervention, significantly improves the accuracy of DTI link prediction compared to traditional approaches. Furthermore, our experimental analysis delves deeper into the embedding of intervention values, offering valuable insights for guiding the design and development of subsequent drug development experiments. As a result, our predicted outcomes serve as valuable guidance in the pursuit of more efficient drug development processes.

摘要

预测药物-靶点相互作用(DTI)是药物发现和开发的关键阶段。了解药物和靶点之间的相互作用对于确定药物分子和靶点之间的特定关系至关重要,这类似于使用信息技术解决链接预测问题。尽管知识图(KG)和知识图嵌入(KGE)方法在药物发现中取得了快速进展,并表现出了令人印象深刻的性能,但它们在识别 DTI 方面往往缺乏真实性和准确性。这导致药物开发中的误判率增加和效率降低。为了解决这些挑战,我们专注于通过 KGE 提高 DTI 预测模型的准确性,特别强调因果干预置信度度量(CI)。这些措施旨在评估三元组得分,提高预测的精度。在三个数据集上进行的比较实验,并利用 9 个 KGE 模型表明,与传统方法相比,我们通过因果干预提出的置信度度量方法显著提高了 DTI 链接预测的准确性。此外,我们的实验分析更深入地探讨了干预值的嵌入,为指导后续药物开发实验的设计和开发提供了有价值的见解。因此,我们的预测结果为追求更高效的药物开发过程提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验