Suppr超能文献

基于异构网络图卷积的药物-靶标相互作用预测。

GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.

机构信息

College of Computer and Information Engineering, Henan Normal University, Xinxiang, China; Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, Xinxiang, China; Big Data Engineering Laboratory for Teaching Resources and Assessment of Education Quality of Henan Province, Xinxiang, China.

College of Computer and Information Engineering, Henan Normal University, Xinxiang, China.

出版信息

Methods. 2022 Oct;206:101-107. doi: 10.1016/j.ymeth.2022.08.016. Epub 2022 Sep 1.

Abstract

Determining the interaction of drug and target plays a key role in the process of drug development and discovery. The calculation methods can predict new interactions and speed up the process of drug development. In recent studies, the network-based approaches have been proposed to predict drug-target interactions. However, these methods cannot fully utilize the node information from heterogeneous networks. Therefore, we propose a method based on heterogeneous graph convolutional neural network for drug-target interaction prediction, GCHN-DTI (Predicting drug-target interactions by graph convolution on heterogeneous net-works), to predict potential DTIs. GCHN-DTI integrates network information from drug-target interactions, drug-drug interactions, drug-similarities, target-target interactions, and target-similarities. Then, the graph convolution operation is used in the heterogeneous network to obtain the node embedding of the drugs and the targets. Furthermore, we incorporate an attention mechanism between graph convolutional layers to combine node embedding from each layer. Finally, the drug-target interaction score is predicted based on the node embedding of the drugs and the targets. Our model uses fewer network types and achieves higher prediction performance. In addition, the prediction performance of the model will be significantly improved on the dataset with a higher proportion of positive samples. The experimental evaluations show that GCHN-DTI outperforms several state-of-the-art prediction methods.

摘要

确定药物和靶点的相互作用在药物开发和发现过程中起着关键作用。计算方法可以预测新的相互作用,加快药物开发的进程。在最近的研究中,已经提出了基于网络的方法来预测药物-靶点相互作用。然而,这些方法不能充分利用来自异构网络的节点信息。因此,我们提出了一种基于异构图卷积神经网络的药物-靶点相互作用预测方法,GCHN-DTI(通过异构网络上的图卷积预测药物-靶点相互作用),用于预测潜在的 DTI。GCHN-DTI 整合了来自药物-靶点相互作用、药物-药物相互作用、药物相似性、靶点-靶点相互作用和靶点相似性的网络信息。然后,在异构网络中使用图卷积操作来获得药物和靶点的节点嵌入。此外,我们在图卷积层之间引入了注意力机制,以结合来自每个层的节点嵌入。最后,基于药物和靶点的节点嵌入来预测药物-靶点相互作用得分。我们的模型使用的网络类型较少,并且具有更高的预测性能。此外,在阳性样本比例较高的数据集上,模型的预测性能会显著提高。实验评估表明,GCHN-DTI 优于几种最先进的预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验