Suppr超能文献

通过不同价态的铁选择性地增强厌氧氨氧化与异养微生物的协同作用:活性平衡、代谢机制和功能基因调控。

Enhancing collaboration of anammox with heterotrophic microbes mediated selectively by iron of different valences: Activities balance, metabolic mechanism, and functional genes regulation.

机构信息

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.

出版信息

Chemosphere. 2024 Sep;364:143226. doi: 10.1016/j.chemosphere.2024.143226. Epub 2024 Aug 31.

Abstract

The partial denitrification/anammox (PD/A) process is receiving increasing attention due to its cost-effectiveness advantages. However, effective strategies to alleviate organic matter inhibition and promote anammox activity have been proven to be a big challenge. This study investigated the effects of three types of iron (nano zero-valent iron (nZVI), Fe(II), and Fe(III)) on the PD/A process. It is worth noting that nZVI of 5-50 mg/L and Fe(III) of 5-120 mg/L promoted both PD and anammox activity. Long-term intermittent addition of nZVI (50 mg/L) resulted in a nitrogen removal efficiency of 98.2% in the mixotrophic PD/A system driven by iron and organic matter. The contribution of anammox for nitrogen removal reached as high as 93.8%. The organic carbon demand decreased due to the external electron donor provided by nZVI for PD. Multiple Fe-N metabolic pathways, primarily involving ammonia oxidation by Fe(III) and nitrate reduction by nZVI, play a crucial role in facilitating nitrogen transformation. Conversely, the direct addition of 30-120 mg/L Fe (II) resulted in a significant decrease in pH to below 5.0 and severe inhibition of PD and anammox activity. Following prolonged operation in the presence of nZVI, it was demonstrated that there is an enhancing effect on robust nitrite production for anammox. This was accompanied by a remarkable up-regulation of genes encoding nitrate reductase and iron-transporting proteins dominated by Thauera. Overall, this study has provided an efficient approach for advanced nitrogen removal through organic- and iron-driven anammox processes.

摘要

部分反硝化/厌氧氨氧化(PD/A)工艺因其具有成本效益优势而受到越来越多的关注。然而,已证实缓解有机物抑制并促进厌氧氨氧化活性的有效策略是一个巨大的挑战。本研究考察了三种铁(纳米零价铁(nZVI)、Fe(II)和 Fe(III))对 PD/A 工艺的影响。值得注意的是,5-50 mg/L 的 nZVI 和 5-120 mg/L 的 Fe(III)均促进 PD 和厌氧氨氧化活性。长期间歇性添加 50 mg/L 的 nZVI 导致在由铁和有机物驱动的混合 PD/A 系统中脱氮效率达到 98.2%。厌氧氨氧化对氮去除的贡献高达 93.8%。由于 nZVI 为 PD 提供了外部电子供体,有机物碳需求减少。多种 Fe-N 代谢途径,主要涉及 Fe(III)的氨氧化和 nZVI 的硝酸盐还原,在促进氮转化方面发挥着重要作用。相反,直接添加 30-120 mg/L 的 Fe(II)会导致 pH 显著下降至 5.0 以下,并严重抑制 PD 和厌氧氨氧化活性。在存在 nZVI 的情况下长时间运行后,表明对厌氧氨氧化产生稳定亚硝酸盐具有增强作用。这伴随着硝酸盐还原酶和铁转运蛋白的基因表达显著上调,这些基因主要由 Thauera 编码。总体而言,本研究通过有机和铁驱动的厌氧氨氧化过程提供了一种高效的深度脱氮方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验