Suppr超能文献

功能生物炭通过特定的 B-C-N 结构加速过一硫酸盐活化以降解有机污染物。

Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration.

机构信息

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.

Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA.

出版信息

Chemosphere. 2024 Oct;365:143202. doi: 10.1016/j.chemosphere.2024.143202. Epub 2024 Aug 30.

Abstract

Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (K = 0.0655 min), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (O) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BCO group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.

摘要

功能化生物炭通过杂原子掺杂设计,有利于过一硫酸盐(PMS)的活化,触发自由基和非自由基体系,从而提高污染物降解效率。通过硼和氮的顺序掺杂,从超富集植物(Sedum alfredii)残渣中合成了一系列功能化生物炭。SABC-B@N-2 在活化 PMS 降解模型污染物酸性橙 7(K=0.0655 min)方面表现出卓越的催化效果,比原始生物炭活性高 6.75 倍,在降低 PMS 浓度(0.1 mM)时达到显著的矿化效率(71.98%)。使用稳态浓度结合电化学和原位拉曼分析的相对贡献评估表明,硼和氮的共掺杂改变了反应途径,从通过多种活性氧(ROS)的 PMS 活化转变为电子转移促进的主要非自由基过程。此外,澄清了先前对单重态氧(O)在 AO7 降解中起核心作用的误解概念。相关分析和密度泛函理论计算表明,独特的 BCN 构型,具有 BCO 基团和吡啶-N,是活性位点的基础。这项研究通过提供一种利用超富集植物残渣合成高催化功能生物炭的可行方法,大大推进了植物修复的可持续性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验