Suppr超能文献

光系统II中的D1-Tyr246和D2-Tyr244:对碳酸氢盐结合以及从Q到Q的电子转移的深入了解

D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from Q to Q.

作者信息

Nihara Ruri, Saito Keisuke, Kuroda Hiroshi, Komatsu Yasuto, Chen Yang, Ishikita Hiroshi, Takahashi Yuichiro

机构信息

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

出版信息

Biochim Biophys Acta Bioenerg. 2025 Jan 1;1866(1):149507. doi: 10.1016/j.bbabio.2024.149507. Epub 2024 Aug 30.

Abstract

In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from Q to Q in all mutants. Bicarbonate reconstitution resulted in enhanced O-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.

摘要

在光系统II(PSII)中,D1-Tyr246和D2-Tyr244对称地位于非血红素铁复合物的碳酸氢根配体结合位点。在此,我们通过构建莱茵衣藻PSII的四个叶绿体突变体:D1-Y246F、D1-Y246T、D2-Y244F和D2-Y244T,研究了对称排列的酪氨酸对D1-Tyr246和D2-Tyr244在PSII功能中的作用。这些突变体表现出光自养生长改变、PSII蛋白积累减少以及放氧活性受损。闪光诱导的荧光产率衰减动力学表明,所有突变体中从Q到Q的电子传递显著减慢。碳酸氢根重构导致放氧活性增强,表明突变体中碳酸氢根结合不稳定。基于量子力学/分子力学方法的结构分析确定存在一个水通道,该通道导致大量水分子的掺入和碳酸氢根结合位点的不稳定。对碳酸氢根稳定性至关重要的水摄入通道在突变体中表现出不同的路径。这些发现揭示了酪氨酸对在维持碳酸氢根稳定性和促进天然PSII中有效电子传递方面的重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验