Suppr超能文献

基于生物信息学的铜死亡相关基因筛选构建和验证及其用于阿尔茨海默病风险模型的研究。

Construction and validation of a bioinformatics‑based screen for cuproptosis‑related genes and risk model for Alzheimer's disease.

机构信息

College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Baise, Guangxi 533000, P.R. China.

Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China.

出版信息

Mol Med Rep. 2024 Nov;30(5). doi: 10.3892/mmr.2024.13318. Epub 2024 Sep 2.

Abstract

The present study aimed to validate the association between core cuproptosis genes (CRGs) and Alzheimer's disease (AD) from both bioinformatics and experimental perspectives and also to develop a risk prediction model. To this end, 78 human‑derived temporal back samples were analyzed from GSE109887, and the biological functions of the resulting CRGs were explored by cluster analysis, weighted gene co‑expression network analysis and similar methods to identify the best machine model. Moreover, an external dataset GSE33000 and a nomogram were used to validate the model. The mRNA and protein expression of CRGs were validated using the SH‑SY5Y cell model and the Sprague‑Dawley rat animal model. The RT‑qPCR and western blotting results showed that the mRNA and protein expression content of dihydrolipoamide dehydrogenase, ferredoxin 1, glutaminase and pyruvate dehydrogenase E1 subunit β decreased, and the expression of dihydrolipoamide branched chain transacylase E2 increased in AD, which supported the bioinformatic analysis results. The CRG expression alterations affected the aggregation and infiltration of certain immune cells. The present study also confirmed the accuracy and validity of AD diagnostic models and nomograms, and validated the association between five CRGs and AD, indicating a significant difference between patients with AD and healthy individuals. Therefore, CRGs are expected to serve as relevant biomarkers for the diagnosis and prognostic monitoring of AD.

摘要

本研究旨在从生物信息学和实验两个角度验证核心铜死亡基因(CRGs)与阿尔茨海默病(AD)之间的关联,并构建风险预测模型。为此,分析了 GSE109887 中 78 个人类颞叶后部样本,通过聚类分析、加权基因共表达网络分析和类似方法探索所得 CRGs 的生物学功能,以确定最佳的机器模型。此外,还使用外部数据集 GSE33000 和诺模图进行了模型验证。使用 SH-SY5Y 细胞模型和 Sprague-Dawley 大鼠动物模型验证了 CRGs 的 mRNA 和蛋白表达。RT-qPCR 和 Western blot 结果表明,AD 中二氢硫辛酰胺脱氢酶、铁氧还蛋白 1、谷氨酰胺酶和丙酮酸脱氢酶 E1 亚基 β 的 mRNA 和蛋白表达含量降低,而二氢硫辛酰胺支链转酰酶 E2 的表达增加,这支持了生物信息学分析结果。CRG 表达变化影响了某些免疫细胞的聚集和浸润。本研究还证实了 AD 诊断模型和诺模图的准确性和有效性,并验证了五个 CRGs 与 AD 之间的关联,表明 AD 患者与健康个体之间存在显著差异。因此,CRGs 有望成为 AD 诊断和预后监测的相关生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验