School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
Anal Chem. 2024 Sep 17;96(37):14926-14934. doi: 10.1021/acs.analchem.4c02991. Epub 2024 Sep 1.
In conventional metal-organic framework (MOF) luminophore-involved electrochemiluminescence (ECL) systems, the aggregation-caused quenching commonly exists for the organic luminescent ligands, limiting the ECL efficiency and detection sensitivity. Herein, by employing the aggregation-induced emission luminogen (AIEgen) 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (HTCBPE) as a ligand, one high-efficiency ECL emitter (Zr-MOF) was synthesized through a simple hydrothermal reaction. Compared with HTCBPE monomers and their aggregates, the resultant Zr-MOF possesses the strongest ECL emission, which is mainly attributed to the framework-induced ECL enhancement. Specifically, the heterostructure was prepared by the deposition of silver nanoparticles on TiO microflowers and utilized as an efficient coreaction accelerator. Remarkably, the formative heterojunction can increase the interfacial charge transfer efficiency and promote the carrier separation, facilitating the oxidation of coreactant tripropylamine. In this way, a novel aptamer-mediated ECL sensing platform is constructed, achieving the sensitive analysis of adenosine triphosphate with a low detection limit of 0.17 nM. As a proof-of-concept study, this work may enlighten the rational design of new-type MOF-based ECL materials and expand the application scope of the ECL technology.
在传统的金属有机骨架(MOF)发光体涉及的电致化学发光(ECL)系统中,有机发光配体通常存在聚集引起的猝灭,限制了 ECL 的效率和检测灵敏度。在此,通过采用聚集诱导发射发光体(AIEgen)1,1,2,2-四(4-羧基联苯)乙烯(HTCBPE)作为配体,通过简单的水热反应合成了一种高效的 ECL 发射器(Zr-MOF)。与 HTCBPE 单体及其聚集体相比,所得的 Zr-MOF 具有最强的 ECL 发射,这主要归因于框架诱导的 ECL 增强。具体而言,通过在 TiO 微花上沉积银纳米粒子制备了异质结构,并将其用作高效的共反应加速剂。值得注意的是,形成的异质结可以提高界面电荷转移效率并促进载流子分离,有利于共反应物三丙胺的氧化。通过这种方式,构建了一种新的适体介导的 ECL 传感平台,实现了对三磷酸腺苷的灵敏分析,检测限低至 0.17 nM。作为概念验证研究,这项工作可能会启发新型基于 MOF 的 ECL 材料的合理设计,并扩展 ECL 技术的应用范围。