School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
School of Science, RMIT University, Melbourne, Victoria, 3001, Australia.
Nanoscale. 2024 Sep 19;16(36):16870-16886. doi: 10.1039/d4nr01315h.
Human amylin is an inherently disordered protein whose ability to form amyloid fibrils is linked to the onset of type II diabetes. Graphitic nanomaterials have potential in managing amyloid diseases as they can disrupt protein aggregation processes in biological settings, but optimising these materials to prevent fibrillation is challenging. Here, we employ bias-exchange molecular dynamics simulations to systematically study the structure and adsorption preferences of amylin on graphitic nanoflakes that vary in their physical dimensions and surface functionalisation. Our findings reveal that nanoflake size and surface oxidation both influence the structure and adsorption preferences of amylin. The purely hydrophobic substrate of pristine graphene (PG) nanoflakes encourages non-specific protein adsorption, leading to unrestricted lateral mobility once amylin adheres to the surface. Particularly on larger PG nanoflakes, this induces structural changes in amylin that may promote fibril formation, such as the loss of native helical content and an increase in β-sheet character. In contrast, oxidised graphene nanoflakes form hydrogen bonds between surface oxygen sites and amylin, and as such restricting protein mobility. Reduced graphene oxide (rGO) flakes, featuring lower amounts of surface oxidation, are amphiphilic and exhibit substantial regions of bare carbon which promote protein binding and reduced conformational flexibility, leading to conservation of the native structure of amylin. In comparison, graphene oxide (GO) nanoflakes, which are predominantly hydrophilic and have a high degree of surface oxidation, facilitate considerable protein structural variability, resulting in substantial contact area between the protein and GO, and subsequent protein unfolding. Our results indicate that tailoring the size, oxygen concentration and surface patterning of graphitic nanoflakes can lead to specific and robust protein binding, ultimately influencing the likelihood of fibril formation. These atomistic insights provide key design considerations for the development of graphitic nanoflakes that can modulate protein aggregation by sequestering protein monomers in the biological environment and inhibit conformational changes linked to amyloid fibril formation.
人胰岛淀粉样多肽是一种固有无序的蛋白质,其形成淀粉样纤维的能力与 2 型糖尿病的发病有关。 石墨纳米材料在管理淀粉样疾病方面具有潜力,因为它们可以在生物环境中破坏蛋白质聚集过程,但优化这些材料以防止纤维形成具有挑战性。 在这里,我们使用偏置交换分子动力学模拟系统地研究了在物理尺寸和表面功能化方面变化的石墨纳米薄片上淀粉样多肽的结构和吸附偏好。 我们的研究结果表明,纳米片的大小和表面氧化都影响淀粉样多肽的结构和吸附偏好。 原始石墨烯(PG)纳米薄片的纯疏水性基底促进非特异性蛋白质吸附,一旦淀粉样多肽附着在表面上,就会导致其横向迁移不受限制。 特别是在较大的 PG 纳米薄片上,这会导致淀粉样多肽发生结构变化,从而可能促进纤维形成,例如天然螺旋含量的丧失和β-折叠特征的增加。 相比之下,氧化石墨烯纳米薄片在表面氧位和淀粉样多肽之间形成氢键,从而限制蛋白质的迁移。 具有较低表面氧化程度的还原氧化石墨烯(rGO)薄片具有两亲性,并表现出大量裸露的碳原子区域,这促进了蛋白质结合并降低了构象灵活性,从而保持了淀粉样多肽的天然结构。 相比之下,氧化石墨烯(GO)纳米薄片主要是亲水的且具有高度的表面氧化,促进了蛋白质结构的巨大可变性,导致蛋白质与 GO 之间的接触面积大,随后蛋白质展开。 我们的结果表明,通过调整石墨纳米薄片的尺寸、氧浓度和表面图案化,可以实现特定且稳健的蛋白质结合,最终影响纤维形成的可能性。 这些原子水平的见解为开发石墨纳米薄片提供了关键的设计考虑因素,这些纳米薄片可以通过在生物环境中隔离蛋白质单体并抑制与淀粉样纤维形成相关的构象变化来调节蛋白质聚集。