Zhang Xinyu, Jiao Yang, Zhang Dezhi, Wang Xiaocong, Cui Yaoyao
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163 China.
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163 China.
Biomed Eng Lett. 2024 Jun 10;14(5):1011-1021. doi: 10.1007/s13534-024-00385-0. eCollection 2024 Sep.
Characterizing liver tumors remains a challenge in clinical practice. Ultrasound parametric imaging based on statistical distribution can enhance image contrast compared with B-mode imaging, requiring scatterers following specific distributions. This study proposes a pixel-based small-window parametric ultrasound imaging method using weighted horizontally normalized Shannon entropy (WhNSE) and fuzzy entropy (FE) to improve detectability liver tumor.
Pixel-based parametric imaging requires a sliding window to traverse across the B-mode image with the step of one pixel, while calculating the entropy by the pixel values in the window. The entropy is assigned to the center pixel of the sliding window. The entropy image is obtained after getting the entropy values of all pixels. FE and WhNSE are two novel entropies first applied to parametric imaging. The detection abilities of regions of interest (ROI) and the contrast-to-noise ratio (CNR) were evaluated through simulations and clinical explorations.
In simulations, FE imaging showed the highest improvement in detecting hyperechoic ROIs, with a CNR gain up to 457.31% ( < 0.01) in simulations. WhNSE imaging demonstrated the best performance in hyperechoic ROI detection, with a CNR of 1.607 ± 0.816 ( = 0.05), significantly higher than B-mode images.
The proposed pixel-based parametric imaging method based on fuzzy entropy and weighted horizontally normalized Shannon entropy both effectively enhance the contrast and detectability of ultrasound images. The imaging enhancement method of the pixel-based fuzzy entropy imaging with proper parameters got better detection performance, due to the consideration of the relationship of neighboring pixels.
在临床实践中,肝脏肿瘤的特征描述仍然是一项挑战。基于统计分布的超声参数成像与B模式成像相比,可以增强图像对比度,这需要散射体遵循特定分布。本研究提出一种基于像素的小窗口参数超声成像方法,使用加权水平归一化香农熵(WhNSE)和模糊熵(FE)来提高肝脏肿瘤的可检测性。
基于像素的参数成像需要一个滑动窗口以一个像素的步长遍历B模式图像,同时通过窗口中的像素值计算熵。熵被分配给滑动窗口的中心像素。在获得所有像素的熵值后得到熵图像。FE和WhNSE是首次应用于参数成像的两种新型熵。通过模拟和临床探索评估感兴趣区域(ROI)的检测能力和对比度噪声比(CNR)。
在模拟中,FE成像在检测高回声ROI方面显示出最高的改善,在模拟中CNR增益高达457.31%(<0.01)。WhNSE成像在高回声ROI检测中表现最佳,CNR为1.607±0.816(=0.05),明显高于B模式图像。
所提出的基于模糊熵和加权水平归一化香农熵的基于像素的参数成像方法均有效地增强了超声图像的对比度和可检测性。基于像素的模糊熵成像的成像增强方法在适当参数下具有更好的检测性能,这是由于考虑了相邻像素之间的关系。