Yu Tian, Li Yunhe, Kim Michael E, Gao Chenyu, Yang Qi, Cai Leon Y, Resnick Susane M, Beason-Held Lori L, Moyer Daniel C, Schilling Kurt G, Landman Bennett A
Vanderbilt University, Nashville, TN, USA.
Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006286. Epub 2024 Apr 2.
Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI. In this paper, we generalize the training mechanism to traditional clinical resolution data, which allows generalizability across sensitive and susceptible study populations. We train CoRNN on a small subset of the Baltimore Longitudinal Study of Aging (BLSA), which better resembles clinical scans. We define a metric, termed the epsilon ball seeding method, to compare T1 tractography and traditional diffusion tractography at the streamline level. We show that under this metric T1 tractography generated by CoRNN reproduces diffusion tractography with approximately three millimeters of error.
扩散磁共振成像(dMRI)纤维束示踪技术是大脑白质(WM)通路活体估计的金标准,长期以来一直被认为是WM微观结构的产物。然而,纤维束示踪技术的最新进展表明,采用师生框架训练的卷积循环神经网络(CoRNN)有能力学习直接从T1和解剖背景中传播纤维束。该网络的训练以前依赖于高分辨率dMRI。在本文中,我们将训练机制推广到传统临床分辨率数据,这使得该技术能够在敏感和易感研究人群中具有通用性。我们在巴尔的摩纵向衰老研究(BLSA)的一个小子集上训练CoRNN,该子集更类似于临床扫描。我们定义了一种称为ε球种子法的指标,以在纤维束水平上比较T1纤维束示踪和传统扩散纤维束示踪。我们表明,在该指标下,CoRNN生成的T1纤维束示踪与扩散纤维束示踪的误差约为三毫米。