Shaikh Jahaan, Patel Salman, Nagani Afzal, Shah Moksh, Ugharatdar Siddik, Patel Ashish, Shah Drashti, Patel Dharti
Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat India.
Research and Development Cell, Parul University, Vadodara, Gujarat India.
In Silico Pharmacol. 2024 Aug 29;12(2):79. doi: 10.1007/s40203-024-00255-8. eCollection 2024.
In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R) value of 0.9754, and a correlation coefficient for test set Q value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.
在对抗结核病的探索中,DprE1因其体积小且位于细胞膜上,成为新型抗结核药物具有挑战性的靶点,一直是研究的焦点。DprE1催化DPR转化为酮核糖DPX,苯并噻嗪酮成为抑制DprE1的有效药效基团。BTZ043、BTZ038、PBTZ169和TMC - 207等临床试验药物作为DprE1抑制剂已显示出有前景的结果。本研究采用吡唑并吡啶、二硝基苯甲酰胺和苯并噻嗪酮衍生物的药效团映射来确定引发生物反应的关键特征。苯并噻嗪酮(配体代码:73)作为参考配体出现,适应度评分为3.000。ROC分析以0.71的优异分数验证了药效团。为构建三维定量构效关系(3D QSAR)模型,探索了一系列苯并噻嗪酮同系衍生物。该模型表现出强大的性能,标准偏差为0.1531,训练集相关系数(R)值为0.9754,测试集Q值相关系数为0.7632,表明具有强大的预测能力。等高线图指导新型苯并噻嗪酮衍生物的设计,强调了立体、静电、疏水、氢键受体和氢键供体基团与构效关系。针对PDB ID:4NCR的对接研究显示出良好的分数,相互作用与内置配体26 J很好地对齐。通过均方根偏差(RMSD)值进行的对接验证支持了对接结果的可靠性。这种综合方法有助于设计具有潜在抗结核特性的新型苯并噻嗪酮衍生物,有助于开发新型抗结核药物,这在根除结核病方面可能至关重要。