Suppr超能文献

用于新型血管内皮生长因子受体-2(VEGFR2)药物发现的3D生理信息深度学习

3D physiologically-informed deep learning for drug discovery of a novel vascular endothelial growth factor receptor-2 (VEGFR2).

作者信息

Xu Mengyang, Xiao Xiaoyue, Chen Yinglu, Zhou Xiaoyan, Parisi Luca, Ma Renfei

机构信息

Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China.

Department of Computer Science, Tutorantis, Edinburgh, EH2 4AN, Scotland, United Kingdom.

出版信息

Heliyon. 2024 Aug 8;10(16):e35769. doi: 10.1016/j.heliyon.2024.e35769. eCollection 2024 Aug 30.

Abstract

Angiogenesis is an essential process in tumorigenesis, tumor invasion, and metastasis, and is an intriguing pathway for drug discovery. Targeting vascular endothelial growth factor receptor 2 (VEGFR2) to inhibit tumor angiogenic pathways has been widely explored and adopted in clinical practice. However, most drugs, such as the Food and Drug Administration -approved drug axitinib (ATC code: L01EK01), have considerable side effects and limited tolerability. Therefore, there is an urgent need for the development of novel VEGFR2 inhibitors. In this study, we propose a novel strategy to design potential candidates targeting VEGFR2 using three-dimensional (3D) deep learning and structural modeling methods. A geometric-enhanced molecular representation learning method (GEM) model employing a graph neural network (GNN) as its underlying predictive algorithm was used to predict the activity of the candidates. In the structural modeling method, flexible docking was performed to screen data with high affinity and explore the mechanism of the inhibitors. Small -molecule compounds with consistently improved properties were identified based on the intersection of the scores obtained from both methods. Candidates identified using the GEM-GNN model were selected for in silico modeling using molecular dynamics simulations to further validate their efficacy. The GEM-GNN model enabled the identification of candidate compounds with potentially more favorable properties than the existing drug, axitinib, while achieving higher efficacy.

摘要

血管生成是肿瘤发生、肿瘤侵袭和转移过程中的一个重要过程,也是药物研发中一个引人关注的途径。靶向血管内皮生长因子受体2(VEGFR2)以抑制肿瘤血管生成途径已在临床实践中得到广泛探索和应用。然而,大多数药物,如美国食品药品监督管理局批准的药物阿昔替尼(ATC代码:L01EK01),都有相当大的副作用且耐受性有限。因此,迫切需要开发新型VEGFR2抑制剂。在本研究中,我们提出了一种使用三维(3D)深度学习和结构建模方法设计靶向VEGFR2的潜在候选物的新策略。一种采用图神经网络(GNN)作为其底层预测算法的几何增强分子表示学习方法(GEM)模型被用于预测候选物的活性。在结构建模方法中,进行了柔性对接以筛选具有高亲和力的数据并探索抑制剂的作用机制。基于从两种方法获得的分数的交集,鉴定出具有持续改善性质的小分子化合物。使用GEM-GNN模型鉴定的候选物被选择用于使用分子动力学模拟进行计算机模拟,以进一步验证其疗效。GEM-GNN模型能够鉴定出具有比现有药物阿昔替尼潜在更有利性质的候选化合物,同时实现更高的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb0/11365333/f0f88697d0f9/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验