Wang Yang, Li Yang, Jiao Shusheng, Pan Yuanhang, Deng Xiwei, Qin Yunlong, Zhao Di, Liu Zhirong
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China.
Heliyon. 2024 Jul 23;10(16):e35065. doi: 10.1016/j.heliyon.2024.e35065. eCollection 2024 Aug 30.
The high burden of cerebral small vessel disease (CSVD) on neuroimaging is a significant risk factor for stroke, cognitive dysfunction, and emotional disorders. Currently, there is a lack of studies investigating the correlation between metabolic syndrome (MetS), complete blood count-derived inflammatory markers, and total CSVD burden. This study aims to evaluate the total CSVD imaging load using machine learning (ML) algorithms and to explore further the relationship between MetS, complete blood count-derived inflammatory markers, and CSVD load.
We included CSVD patients from Xijing Hospital (2012-2022). Univariate and lasso regression analyses identified variables linked to CSVD neuroimaging burden. Six ML models predicted CSVD burden based on MetS and inflammatory markers. Model performance was evaluated using ROCauc, PRauc, DCA, and calibration curves. The SHAP method validated model interpretability. The best-performing model was selected to develop a web-based calculator using the Shiny package.
The Logistic regression model outperformed others in predicting CSVD burden. The model incorporated MetS, neutrophil-to-lymphocyte ratio (NLR), homocysteine (Hcy), age, smoking status, cystatin C (CysC), uric acid (UA), and prognostic nutritional index (PNI).
MetS, NLR, Hcy and CSVD high load were positively correlated, and the Logistic regression model could accurately predict the total CSVD load degree.
脑小血管疾病(CSVD)在神经影像学上的高负担是中风、认知功能障碍和情绪障碍的重要危险因素。目前,缺乏关于代谢综合征(MetS)、全血细胞计数衍生的炎症标志物与CSVD总负担之间相关性的研究。本研究旨在使用机器学习(ML)算法评估CSVD的总影像负荷,并进一步探讨MetS、全血细胞计数衍生的炎症标志物与CSVD负荷之间的关系。
我们纳入了西京医院(2012 - 2022年)的CSVD患者。单因素和套索回归分析确定了与CSVD神经影像负担相关的变量。六个ML模型基于MetS和炎症标志物预测CSVD负担。使用ROCauc、PRauc、DCA和校准曲线评估模型性能。SHAP方法验证了模型的可解释性。选择性能最佳的模型使用Shiny包开发基于网络的计算器。
Logistic回归模型在预测CSVD负担方面优于其他模型。该模型纳入了MetS、中性粒细胞与淋巴细胞比值(NLR)、同型半胱氨酸(Hcy)、年龄、吸烟状况、胱抑素C(CysC)、尿酸(UA)和预后营养指数(PNI)。
MetS、NLR、Hcy与CSVD高负荷呈正相关,Logistic回归模型能够准确预测CSVD的总负荷程度。