Suppr超能文献

通过选择和随机遗传漂变进化基因调控网络。

Evolution of gene regulatory networks by means of selection and random genetic drift.

机构信息

Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.

Department of Biology, University of Crete, Heraklion, Crete, Greece.

出版信息

PeerJ. 2024 Aug 28;12:e17918. doi: 10.7717/peerj.17918. eCollection 2024.

Abstract

The evolution of a population by means of genetic drift and natural selection operating on a gene regulatory network (GRN) of an individual has not been scrutinized in depth. Thus, the relative importance of various evolutionary forces and processes on shaping genetic variability in GRNs is understudied. In this study, we implemented a simulation framework, called EvoNET, that simulates forward-in-time the evolution of GRNs in a population. The fitness effect of mutations is not constant, rather fitness of each individual is evaluated on the phenotypic level, by measuring its distance from an optimal phenotype. Each individual goes through a maturation period, where its GRN may reach an equilibrium, thus deciding its phenotype. Afterwards, individuals compete to produce the next generation. We examine properties of the GRN evolution, such as robustness against the deleterious effect of mutations and the role of genetic drift. We are able to confirm previous hypotheses regarding the effect of mutations and we provide new insights on the interplay between random genetic drift and natural selection.

摘要

遗传漂变和自然选择作用于个体的基因调控网络(GRN)导致的种群进化尚未被深入研究。因此,各种进化力量和过程对塑造 GRN 中的遗传可变性的相对重要性研究不足。在这项研究中,我们实施了一个名为 EvoNET 的模拟框架,该框架可以实时模拟种群中 GRN 的进化。突变的适应度效应不是恒定的,而是通过测量其与最优表型的距离,在表型水平上评估每个个体的适应度。每个个体都经历一个成熟阶段,在此期间,它的 GRN 可能会达到平衡,从而决定其表型。之后,个体竞争以产生下一代。我们检查了 GRN 进化的特性,例如对突变有害影响的鲁棒性以及遗传漂变的作用。我们能够证实以前关于突变效应的假设,并提供了关于随机遗传漂变和自然选择之间相互作用的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验