Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico.
Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico.
Biosystems. 2022 Feb;212:104586. doi: 10.1016/j.biosystems.2021.104586. Epub 2021 Dec 28.
Biological adaptations depend on natural selection sorting out those individuals that exhibit characters fit to their environment. Selection, in turn, depends on the phenotypic variation present in a population. Thus, evolutionary outcomes depend, to a certain extent, on the kind of variation that organisms can produce through random genetic perturbation, that is, their phenotypic variability. Moreover, the properties of developmental mechanisms that produce the organisms affect their phenotypic variability. Two of these properties are modularity and robustness. Modularity is the degree to which interactions occur mostly within groups of the system's elements and scarcely between elements in different groups. Robustness is the propensity of a system to endure perturbations while preserving its phenotype. In this paper, we used a model of gene regulatory networks (GRNs) to study the relationship between modularity and robustness in developmental processes and how modularity affects the variation that random genetic mutations produce in the expression patterns of GRNs. Our results show that modularity and robustness are correlated in multifunctional GRNs and that selection for one of these properties affects the other as well. We contend that these observations may help to understand why modularity and robustness are widespread in biological systems. Additionally, we found that modular networks tend to produce new expression patterns with subtle changes localized in the expression of a few groups of genes. This effect in the phenotypic variability of modular GRNs may bear important consequences for adaptive evolution: it may help to adjust the expression of one group of genes at a time, with few alterations on other previously evolved expression patterns.
生物适应性取决于自然选择,自然选择会筛选出那些表现出适应其环境特征的个体。选择反过来又取决于群体中存在的表型变异。因此,进化结果在一定程度上取决于生物体通过随机遗传干扰产生的变异种类,即它们的表型可变性。此外,产生生物体的发育机制的特性也会影响它们的表型可变性。其中两个特性是模块性和稳健性。模块性是指系统元素之间的相互作用主要发生在元素组内,而很少发生在不同组的元素之间的程度。稳健性是指系统在保持其表型的同时承受干扰的倾向。在本文中,我们使用基因调控网络(GRN)模型来研究发育过程中模块性和稳健性之间的关系,以及模块性如何影响随机遗传突变在 GRN 表达模式中产生的变异。我们的结果表明,多功能 GRN 中的模块性和稳健性是相关的,并且对其中一个特性的选择也会影响另一个特性。我们认为,这些观察结果可能有助于理解为什么模块性和稳健性在生物系统中广泛存在。此外,我们发现模块化网络往往会产生新的表达模式,这些模式的细微变化集中在少数几组基因的表达上。模块化 GRN 中表型可变性的这种影响可能对适应性进化产生重要后果:它可以帮助一次调整一组基因的表达,而对其他以前进化的表达模式的改变很少。