Zaheer Kamran, Goncalves Bruno, Suliman Mohamed, Ramalingam Archana, Sodhi Komal, Rueda Rios Carlos
Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA.
Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, USA.
Cureus. 2024 Aug 1;16(8):e65949. doi: 10.7759/cureus.65949. eCollection 2024 Aug.
Introduction Heart failure (HF) poses a substantial and escalating medical and economic challenge, marked by significant morbidity and mortality. It stands as the primary cause of hospital admissions among the elderly, contributing significantly to healthcare expenditures in developed nations. Evaluating cardiac and pulmonary function remains challenging, necessitating careful interpretation to mitigate misdiagnosis and inappropriate treatment. Remote monitoring has emerged as a preventive strategy to curb HF-related hospitalizations, emphasizing the importance of early detection of impending acute HF decompensation. Implantable cardiac defibrillators (ICDs) capture various parameters, including heart rhythm, pacing percentages, thoracic impedance, and physical activity. Objective In this study, we aim to investigate the effectiveness of HeartLogic (Boston Scientific, Marlborough, Massachusetts) parameters in accurately distinguishing HF patients from individuals with alternative diagnoses. Methods This cross-sectional study was conducted at Cabell Huntington Hospital, St. Mary's Medical Center in Huntington, West Virginia, between 2021 and 2022. The study involved a retrospective chart review of electronic medical records, approved by the institutional review board, encompassing patients aged >18 admitted with Heartlogic-capable devices. The analysis included demographic variables, admission and discharge diagnoses, length of hospital stays, health literacy index, and thoracic impedance. Results Of the initially included 26 patients, 19 met all inclusion criteria. The demographic profile highlighted a predominantly older population with a male preponderance and a notable incidence of congestive heart failure (CHF). Physiological changes, particularly in thoracic impedance and the HeartLogic Index, demonstrated significant alterations. Logistic regression analysis revealed that changes in health literacy index and thoracic impedance significantly contributed to predicting the change in CHF diagnosis. Conclusion This study, conducted in a rural setting, demonstrates the capability of the HeartLogic algorithm in predicting HF events, providing valuable insights into its utility in diverse clinical environments. The findings emphasize the potential of this technology to enhance diagnostic accuracy and improve patient outcomes. Despite inherent limitations, this analysis contributes unique perspectives, particularly in the context of a specific and underexplored rural population in West Virginia.
引言
心力衰竭(HF)带来了巨大且不断升级的医学和经济挑战,其特征是高发病率和死亡率。它是老年人住院的主要原因,在发达国家的医疗保健支出中占很大比例。评估心脏和肺功能仍然具有挑战性,需要仔细解读以减少误诊和不适当的治疗。远程监测已成为一种预防策略,以遏制与HF相关的住院治疗,强调早期发现即将发生的急性HF失代偿的重要性。植入式心脏除颤器(ICD)可获取各种参数,包括心律、起搏百分比、胸阻抗和身体活动。
目的
在本研究中,我们旨在调查HeartLogic(波士顿科学公司,马萨诸塞州马尔伯勒)参数在准确区分HF患者与其他诊断患者方面的有效性。
方法
这项横断面研究于2021年至2022年在西弗吉尼亚州亨廷顿的卡贝尔亨廷顿医院和圣玛丽医疗中心进行。该研究涉及对电子病历的回顾性图表审查,经机构审查委员会批准,涵盖年龄>18岁且植入了具备Heartlogic功能设备的住院患者。分析包括人口统计学变量、入院和出院诊断、住院时间、健康素养指数和胸阻抗。
结果
最初纳入的26例患者中,19例符合所有纳入标准。人口统计学特征显示主要为老年人群,男性居多,充血性心力衰竭(CHF)发病率较高。生理变化,特别是胸阻抗和HeartLogic指数的变化,显示出显著改变。逻辑回归分析表明,健康素养指数和胸阻抗的变化对预测CHF诊断的变化有显著贡献。
结论
本研究在农村地区进行,证明了HeartLogic算法在预测HF事件方面的能力,为其在不同临床环境中的实用性提供了有价值的见解。研究结果强调了该技术提高诊断准确性和改善患者预后的潜力。尽管存在固有局限性,但本分析提供了独特的观点,特别是在西弗吉尼亚州特定且未充分探索的农村人口背景下。