Suppr超能文献

基于框架的深部脑刺激的幻影增强高机械精度

Phantom-Enhanced High Mechanical Accuracy for Frame-Based Deep Brain Stimulation.

作者信息

Sedrak Mark, Pezeshkian Patrick, Latoff James, Srivastava Siddharth, Anderson Ross W

机构信息

Neurosurgery, Kaiser Permanente, Redwood City, USA.

Neurosurgery, Stanford University, Palo Alto, USA.

出版信息

Cureus. 2024 Aug 2;16(8):e66025. doi: 10.7759/cureus.66025. eCollection 2024 Aug.

Abstract

Deep brain stimulation (DBS) is a neurosurgical procedure that depends on high-accuracy targeting of structures to implant electrodes within the brain. The positioning of these electrodes in the brain determines the long-term efficacy of treating diseases such as Parkinson's disease, essential tremor, or dystonia. Misplaced electrodes in DBS can lead to poor efficacy and stimulation-induced side effects. Widespread targeting errors and variability have been published throughout the literature. As such, improvement in targeting accuracy is needed to enhance the quality of the procedures. A stereotactic phantom was utilized to test and adjust targeting before the surgical placement in the brain for 91 sequential electrodes. The tip of the microelectrode, the first rigid point in time, was measured and compared to the planned target. The technique utilized a to-target cannula with an XY stage that allowed x-axis and y-axis adjustments and correction for inaccuracies relative to the phantom. A calculation was developed to convert anatomical angles (sagittal and coronal) provided by commercial planning stations to spherical angles to calculate points along a trajectory. Error calculations included each dimensional axis, Euclidean error, and radial error. Bends in the cannula and microelectrode were observed and corrected by referencing the phantom. All 91 first-pass tracks traversed the intended target, and three electrodes required a second mapping track beyond the first penetration due to neurophysiological and intraoperative testing. The results showed overall ultra-high (0-0.5 mm) to high (>0.5-1 mm) accuracy, an average Euclidean error of 0.66±0.30 mm, and a radial error of 0.45±0.28 mm with dimensional errors of less than 0.5 mm per axis. The utilization of a stereotactic phantom is an important tool to enhance the stereotactic targeting before insertion into the brain. This phantom technique yielded ultra-high to high accuracy in error calculations. Future methods and studies should focus on error minimization to enhance these DBS mechanical accuracy and correlations with clinical outcomes.

摘要

脑深部电刺激术(DBS)是一种神经外科手术,该手术依赖于对脑内结构进行高精度靶向定位,以便植入电极。这些电极在脑内的定位决定了治疗帕金森病、特发性震颤或肌张力障碍等疾病的长期疗效。DBS中电极位置不当会导致疗效不佳和刺激引起的副作用。文献中已报道了广泛存在的靶向误差和变异性。因此,需要提高靶向精度以提升手术质量。在将91根连续电极手术植入脑内之前,使用立体定向体模对靶向定位进行测试和调整。测量微电极尖端(第一个刚性时间点)并将其与计划靶点进行比较。该技术使用带有XY平台的靶向套管,该平台允许进行x轴和y轴调整,并针对相对于体模的不准确性进行校正。开发了一种计算方法,将商业规划工作站提供的解剖学角度(矢状面和冠状面)转换为球面角度,以计算沿轨迹的点。误差计算包括每个维度轴、欧几里得误差和径向误差。通过参考体模观察并校正套管和微电极中的弯曲。所有91条首次穿刺轨迹都穿过了预期靶点,由于神经生理学和术中测试,三根电极在第一次穿刺后需要进行第二次标测轨迹。结果显示总体精度超高(0 - 0.5毫米)至高(>0.5 - 1毫米),平均欧几里得误差为0.66±0.30毫米,径向误差为0.45±0.28毫米,每个轴的维度误差小于0.5毫米。立体定向体模的使用是在插入脑内之前提高立体定向靶向的重要工具。这种体模技术在误差计算中产生了超高至高的精度。未来的方法和研究应专注于将误差最小化,以提高这些DBS的机械精度及其与临床结果的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d0/11366303/c8049db2e97d/cureus-0016-00000066025-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验