Suppr超能文献

通过拉曼和激光诱导击穿光谱的高级别数据融合鉴定氟喹诺酮类耐药菌。

Identification of fluoroquinolone-resistant through high-level data fusion of Raman and laser-induced breakdown spectroscopy.

机构信息

Industrial Transformation Technology Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-Si, Chungcheongnam-do 31056, Republic of Korea.

Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Anal Methods. 2024 Sep 26;16(37):6349-6355. doi: 10.1039/d4ay01331j.

Abstract

Accurate and rapid diagnosis of drug susceptibility of is crucial for the successful treatment of tuberculosis, a persistent global public health threat. To shorten diagnosis times and enhance accuracy, this study introduces a fusion model combining laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. This model offers a rapid and accurate method for diagnosing drug-resistance. LIBS and Raman spectroscopy provide complementary information, enabling accurate identification of drug resistance in tuberculosis. Although individual use of LIBS or Raman spectroscopy achieved approximately 90% accuracy in identifying drug resistance, the fusion model significantly improved identification accuracy to 98.3%. Given the fast measurement capabilities of both techniques, this fusion approach is expected to markedly decrease the time required for diagnosis.

摘要

准确、快速地诊断结核分枝杆菌的药物敏感性对于成功治疗结核病这一持续存在的全球公共卫生威胁至关重要。为了缩短诊断时间并提高准确性,本研究引入了一种结合激光诱导击穿光谱(LIBS)和拉曼光谱的融合模型。该模型为诊断耐药性提供了一种快速、准确的方法。LIBS 和拉曼光谱提供了互补信息,能够准确识别结核病的耐药性。虽然单独使用 LIBS 或拉曼光谱在识别耐药性方面的准确率约为 90%,但融合模型的识别准确率显著提高到 98.3%。鉴于这两种技术的快速测量能力,这种融合方法有望显著缩短诊断所需的时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验