Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
Soft Matter. 2024 Sep 18;20(36):7185-7198. doi: 10.1039/d4sm00592a.
Filamentous viruses like influenza and torovirus often display systematic bends and arcs of mysterious physical origin. We propose that such viruses undergo an instability from a cylindrically symmetric to a toroidally curved state. This "toro-elastic" state emerges spontaneous symmetry breaking under prestress due to short range spike protein interactions magnified by surface topography. Once surface stresses are sufficiently large, the filament buckles and the curved state constitutes a soft mode that can potentially propagate through the filament's material frame around a Mexican-hat-type potential. In the mucus of our airways, which constitutes a soft, porous 3D network, glycan chains are omnipresent and influenza's spike proteins are known to efficiently bind and cut them. We next show that such a non-equilibrium enzymatic reaction can induce spontaneous rotation of the curved state, leading to a whole body reshaping propulsion similar to - but different from - eukaryotic flagella and spirochetes.
丝状病毒,如流感病毒和轮状病毒,经常呈现出系统的弯曲和弧形,其物理起源神秘莫测。我们提出,此类病毒会从圆柱对称状态不稳定地转变为环向弯曲状态。这种“环向弹性”状态是由于短程刺突蛋白相互作用在表面形貌放大下自发对称性破缺而产生的预应压力。一旦表面应力足够大,纤维就会弯曲,而弯曲状态构成一个软模式,可能会在墨西哥帽型势周围沿纤维的材料框架传播。在我们气道的黏液中,存在一个柔软、多孔的 3D 网络,聚糖链无处不在,而流感的刺突蛋白已知能够有效地结合和切割它们。接下来,我们表明,这种非平衡酶反应可以诱导弯曲状态的自发旋转,从而产生类似于但不同于真核鞭毛和螺旋体的全身重塑推进。