Suppr超能文献

仿生功能复合材料通过分形生长 CuNP 填充剂提高导热率。

Bioinspired Functional Composites for Enhanced Thermally Conductivity via Fractal-Growth CuNP Fillers.

机构信息

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China.

出版信息

ACS Appl Bio Mater. 2024 Sep 16;7(9):6297-6305. doi: 10.1021/acsabm.4c00905. Epub 2024 Sep 2.

Abstract

Thermal conduction for electronic devices has attracted extensive attention in light of the development of 5G communication. Thermally conductive materials with high thermal conductivity and extensive mechanical flexibility are extremely desirable in practical applications. However, the construction of efficient interconnected conductive pathways and continuous conductive networks is inadequate for either processing or actual usage in existing technologies. In this work, spherical copper nanoparticles (S-CuNPs) and urchin-inspired fractal-growth CuNPs (U-CuNPs), thermally conductive metal fillers induced by ionic liquids, were fabricated successfully through the electrochemical deposition method. Compared to S-CuNPs, the U-CuNPs shows larger specific surface contact area, thus making it easier to build a continuous conductive pathway network in the corresponding U-CuNPs/liquid silicone rubber (LSR) thermally conductive composites. The optimal loading of CuNP fillers was determined by evaluating the rheological performance of the prepolymer and the mechanical properties and thermal conductivity performances of the composites. When the filler loading is 150 phr, the U-CuNPs/LSR produces optimal mechanical properties (e.g., tensile strength and modulus), thermal conductivity (above 1000% improvement compared to pure LSR), and heating/cooling efficiency. The enhanced thermal conductivity of U-CuNPs/LSR was also confirmed through the finite element analysis (FEA) overall temperature distribution, indicating that U-CuNPs with larger specific surface contact areas exhibit more advantages in forming a continuous network in composites than S-CuNPs, making U-CuNPs/LSR a promising and competitive alternative to traditional flexible thermally interface materials.

摘要

鉴于 5G 通信的发展,电子设备的热传导引起了广泛关注。在实际应用中,人们非常希望得到导热系数高、机械柔韧性广的导热材料。然而,在现有技术中,无论是加工还是实际使用,高效的互联导电途径和连续的导电网络的构建都还不够完善。在这项工作中,通过电化学沉积法成功制备了球形铜纳米粒子(S-CuNPs)和仿海胆分形生长的 CuNPs(U-CuNPs),这两种 CuNPs 是由离子液体诱导的导热金属填料。与 S-CuNPs 相比,U-CuNPs 具有更大的比表面积接触面积,因此更容易在相应的 U-CuNPs/液体硅橡胶(LSR)导热复合材料中构建连续的导电途径网络。通过评估预聚物的流变性能以及复合材料的力学性能和导热性能,确定了 CuNP 填料的最佳负载量。当填料负载量为 150phr 时,U-CuNPs/LSR 产生最佳的力学性能(例如,拉伸强度和模量)、导热性能(与纯 LSR 相比提高了 1000%以上)和加热/冷却效率。通过有限元分析(FEA)整体温度分布也证实了 U-CuNPs/LSR 的导热性能得到了增强,这表明与 S-CuNPs 相比,具有更大比表面积接触面积的 U-CuNPs 在复合材料中形成连续网络方面具有更多优势,使 U-CuNPs/LSR 成为传统柔性导热界面材料的一种有前途且具有竞争力的替代品。

相似文献

1
Bioinspired Functional Composites for Enhanced Thermally Conductivity via Fractal-Growth CuNP Fillers.
ACS Appl Bio Mater. 2024 Sep 16;7(9):6297-6305. doi: 10.1021/acsabm.4c00905. Epub 2024 Sep 2.
3
Highly Thermally Conductive Polyimide Composites via Constructing 3D Networks.
Macromol Rapid Commun. 2019 Sep;40(17):e1800805. doi: 10.1002/marc.201800805. Epub 2019 Jan 23.
4
Exploring the Impact of Visual Heat Conduction Paths on Thermal Conductivity of Polymer Composites and the Practical Applications.
Langmuir. 2024 Aug 6;40(31):16538-16548. doi: 10.1021/acs.langmuir.4c01981. Epub 2024 Jul 23.
6
Hybrid Alumina-Silica Filler for Thermally Conductive Epoxidized Natural Rubber.
Polymers (Basel). 2024 Nov 29;16(23):3362. doi: 10.3390/polym16233362.
8
Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure.
Int J Biol Macromol. 2024 Oct;278(Pt 3):134705. doi: 10.1016/j.ijbiomac.2024.134705. Epub 2024 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验