Zhou Yongcun, Yu Shihu, Niu Huan, Liu Feng
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Polymers (Basel). 2018 Dec 19;10(12):1412. doi: 10.3390/polym10121412.
Electronic devices are increasingly dense, underscoring the need for effective thermal management. A polyimide (PI) matrix nanocomposite film combining boron nitride (BN)-coated copper nanoparticles (CuNPs@BN) and nanowires (CuNWs@BN) was fabricated by a flexible and fast technique for enhanced thermal conductivity and the dielectric properties of nanocomposite films. The thermal conductivity of (CuNPs-CuNWs)@BN/PI composite comprising 10 wt % filler loading rose to 4.32 W/mK, indicating a nearly 24.1-fold increase relative to the value obtained for pure PI matrix. The relative permittivity and dielectric loss approximated 4.92 and 0.026 at 1 MHz, respectively. The results indicated that the surface modification of CuNPs and CuNWs by introducing a ceramic insulating layer BN effectively promoted the formation of thermal conductive networks of nanofillers in the PI matrix. This study enabled the identification of appropriate modifier fillers for polymer matrix nanocomposites to improve electronic applications.
电子设备的密度越来越高,这凸显了有效热管理的必要性。通过一种灵活快速的技术制备了一种聚酰亚胺(PI)基纳米复合薄膜,该薄膜结合了氮化硼(BN)包覆的铜纳米颗粒(CuNPs@BN)和纳米线(CuNWs@BN),以提高纳米复合薄膜的热导率和介电性能。填充量为10 wt%的(CuNPs-CuNWs)@BN/PI复合材料的热导率升至4.32 W/mK,相对于纯PI基体的值增加了近24.1倍。在1 MHz时,相对介电常数和介电损耗分别约为4.92和0.026。结果表明,通过引入陶瓷绝缘层BN对CuNPs和CuNWs进行表面改性,有效地促进了PI基体中纳米填料导热网络的形成。该研究为聚合物基纳米复合材料确定合适的改性填料以改善电子应用提供了可能。