Kellogg Eye Center, University of Michigan, Ann Arbor.
School of Optometry and Vision Science, University of New South Wales.
J Vis Exp. 2024 Aug 16(210). doi: 10.3791/67038.
Mitochondrial metabolism is critical for the normal function of the retinal pigment epithelium (RPE), a monolayer of cells in the retina important for photoreceptor survival. RPE mitochondrial dysfunction is a hallmark of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world, and proliferative vitreoretinopathy (PVR), a blinding complication of retinal detachments. RPE degenerative conditions have been well-modeled by RPE culture systems that are highly differentiated and polarized to mimic in vivo RPE. However, monitoring oxygen consumption rates (OCR), a proxy for mitochondrial function, has been difficult in such culture systems because the conditions that promote ideal RPE polarization and differentiation do not allow for easy OCR measurements. Here, we introduce a novel system, Resipher, to monitor OCR for weeks at a time in well-differentiated RPE cultures while maintaining the RPE on optimal growth substrates and physiologic culture media in a standard cell culture incubator. This system calculates OCR by measuring the oxygen concentration gradient present in the media above cells. We discuss the advantages of this system over other methods for detecting OCR and how to set up the system for measuring OCR in RPE cultures. We cover key tips and tricks for using the system, caution about interpreting the data, and guidelines for troubleshooting unexpected results. We also provide an online calculator for extrapolating the level of hypoxia, normoxia, or hyperoxia RPE cultures experience based on the oxygen gradient in the media above cells detected by the system. Finally, we review two applications of the system, measuring the metabolic state of RPE cells in a PVR model and understanding how the RPE metabolically adapts to hypoxia. We anticipate that the use of this system on highly polarized and differentiated RPE cultures will enhance our understanding of RPE mitochondrial metabolism both under physiologic and disease states.
线粒体代谢对于视网膜色素上皮(RPE)的正常功能至关重要,RPE 是视网膜中的一层细胞,对于光感受器的存活很重要。RPE 线粒体功能障碍是年龄相关性黄斑变性(AMD)的标志,AMD 是发达国家不可逆失明的主要原因,也是增殖性玻璃体视网膜病变(PVR)的致盲并发症,PVR 是视网膜脱离的一种致盲并发症。RPE 退行性疾病在高度分化和极化的 RPE 培养系统中得到了很好的模拟,以模拟体内的 RPE。然而,由于促进理想的 RPE 极化和分化的条件不允许进行简单的 OCR 测量,因此监测耗氧量(OCR)作为线粒体功能的替代指标一直很困难。在这里,我们引入了一种新的系统 Resipher,可以在高度分化的 RPE 培养物中一次监测数周的 OCR,同时在标准细胞培养箱中使 RPE 保持在最佳生长基质和生理培养基上。该系统通过测量细胞上方培养基中存在的氧浓度梯度来计算 OCR。我们讨论了该系统相对于其他检测 OCR 方法的优势,以及如何为 RPE 培养物设置 OCR 测量系统。我们涵盖了使用该系统的关键技巧和窍门,关于解释数据的注意事项,以及解决意外结果的指南。我们还提供了一个在线计算器,可根据系统检测到的细胞上方培养基中的氧梯度, extrapolate 出 RPE 培养物经历的低氧、正常氧或高氧水平。最后,我们回顾了该系统的两个应用,测量 PVR 模型中 RPE 细胞的代谢状态和了解 RPE 如何在代谢上适应低氧。我们预计,该系统在高度极化和分化的 RPE 培养物中的使用将增强我们对 RPE 线粒体代谢在生理和疾病状态下的理解。