School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China.
School of Mechanical Electronic and Information Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47314-47324. doi: 10.1021/acsami.4c11080. Epub 2024 Sep 2.
Hydrogels with sustained lubrication, high load-bearing capacity, and wear resistance are essential for applications in soft tissue replacements and soft material devices. Traditional tough or lubricious hydrogels fail to balance the lubrication and load-bearing functions. Inspired by the gradient-ordered multilayer structures of natural tissues (such as cartilage and ligaments), a tough, smooth, low-permeability, and low-friction anisotropic layered electrospun fiber membrane-reinforced hydrogel was developed using electrospinning and annealing recrystallization. This hydrogel features a stratified porous network structure of varying sizes with tightly bonded interfaces, achieving an interfacial bonding toughness of 1.6 × 10 J/m. The anisotropic fiber membranes, mimicking the orderly fiber structures within soft tissues, significantly enhance the mechanical properties of the hydrogel with a fracture strength of 20.95 MPa, a Young's modulus of 29.64 MPa, and a tear toughness of 37.94 kJ/m and reduce its permeability coefficient (6.1 × 10 m N s). Meanwhile, the hydrogel demonstrates excellent solid-liquid phase load-bearing characteristics, which can markedly improve the tribological performance. Under a contact load of 4.1 MPa, the anisotropic fiber membrane-reinforced hydrogel achieves a friction coefficient of 0.036, a 219% reduction compared with pure hydrogels. Thus, the superior load-bearing and lubricating properties of this layered hydrogel underscore its potential applications in soft tissue replacements, medical implants, and other biomedical devices.
具有持续润滑、高承载能力和耐磨性的水凝胶对于软组织替代物和软材料设备的应用至关重要。传统的坚韧或润滑水凝胶无法平衡润滑和承载功能。受天然组织(如软骨和韧带)的梯度有序多层结构的启发,通过静电纺丝和退火再结晶开发了一种坚韧、光滑、低渗透性和低摩擦各向异性分层电纺纤维膜增强水凝胶。该水凝胶具有不同尺寸的分层多孔网络结构,界面结合紧密,实现了 1.6×10 J/m 的界面结合韧性。各向异性纤维膜模仿软组织内有序的纤维结构,显著提高了水凝胶的机械性能,断裂强度为 20.95 MPa,杨氏模量为 29.64 MPa,撕裂韧性为 37.94 kJ/m,降低了其渗透系数(6.1×10 m N s)。同时,水凝胶表现出优异的固-液相承载特性,可显著改善摩擦学性能。在 4.1 MPa 的接触载荷下,各向异性纤维膜增强水凝胶的摩擦系数为 0.036,与纯水凝胶相比降低了 219%。因此,这种分层水凝胶的卓越承载和润滑性能突显了其在软组织替代物、医疗植入物和其他生物医学设备中的应用潜力。