文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

柔软、强韧、坚韧且耐用的蛋白质基纤维水凝胶。

Soft, strong, tough, and durable protein-based fiber hydrogels.

机构信息

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2213030120. doi: 10.1073/pnas.2213030120. Epub 2023 Feb 15.


DOI:10.1073/pnas.2213030120
PMID:36791112
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9974439/
Abstract

Load-bearing soft tissues normally show J-shaped stress-strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young's modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m), and high fatigue resistance (2,300 ± 500 J/m). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.

摘要

承重软组织通常表现出 J 形的应力-应变行为,在低应变时具有高顺应性,但在高应变时具有高强度。它们具有高含水量,但仍然坚韧耐用。相比之下,天然水凝胶脆弱易碎。虽然由合成聚合物制备的水凝胶可以具有高强度和韧性,但它们不具有新兴生物医学应用所需的生物活性。在这里,我们提出了一种热机械方法来复制基于蛋白质的光交联水凝胶中软组织的组合特性。作为一个演示,我们创建了一种明胶甲基丙烯酰纤维水凝胶,具有软组织样的机械性能,例如低杨氏模量(0.1 至 0.3 MPa)、高强度(1.1 ± 0.2 MPa)、高韧性(9,100 ± 2,200 J/m)和高耐疲劳性(2,300 ± 500 J/m)。这种水凝胶还类似于天然细胞外基质的生化和建筑特性,能够在水凝胶内部快速形成 3D 相互连接的细胞网格。纤维结构还调节细胞力学响应并支持水凝胶内的细胞重塑。具有组织样机械性能和生物活性的整合对于下一代生物材料是非常理想的,并且可以推进组织工程和再生医学等新兴领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/146abcef6b36/pnas.2213030120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/1c7fcbe5e129/pnas.2213030120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/1016ffa236ca/pnas.2213030120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/cc3882a2cea0/pnas.2213030120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/146abcef6b36/pnas.2213030120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/1c7fcbe5e129/pnas.2213030120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/1016ffa236ca/pnas.2213030120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/cc3882a2cea0/pnas.2213030120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/9974439/146abcef6b36/pnas.2213030120fig04.jpg

相似文献

[1]
Soft, strong, tough, and durable protein-based fiber hydrogels.

Proc Natl Acad Sci U S A. 2023-2-21

[2]
Tough, Slippery, and Low-Permeability Multilayer Hydrogels Modified by Anisotropic Fiber Membrane for Soft Tissue Replacement.

ACS Appl Mater Interfaces. 2024-9-11

[3]
3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.

J Mater Chem B. 2022-1-19

[4]
An extremely tough and ionic conductive natural-polymer-based double network hydrogel.

J Mater Chem B. 2021-9-29

[5]
Soft, strong, tough, and durable bio-hydrogels via maximizing elastic entropy.

Adv Funct Mater. 2023-7-11

[6]
Strong, tough and anisotropic bioinspired hydrogels.

Mater Horiz. 2024-5-7

[7]
Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.

ACS Appl Mater Interfaces. 2018-3-21

[8]
Specialty Tough Hydrogels and Their Biomedical Applications.

Adv Healthc Mater. 2020-1

[9]
Cartilage-like protein hydrogels engineered via entanglement.

Nature. 2023-6

[10]
Tough Hydrogels with Different Toughening Mechanisms and Applications.

Int J Mol Sci. 2024-2-26

引用本文的文献

[1]
Tailoring Self-Assembled Peptide Hydrogels with Antimicrobial or Cell Adhesive Properties for Tissue Engineering.

Chemistry. 2025-7-17

[2]
Overcoming ice: cutting-edge materials and advanced strategies for effective cryopreservation of biosample.

J Nanobiotechnology. 2025-3-7

[3]
Mussel-inspired cross-linking mechanisms enhance gelation and adhesion of multifunctional mucin-derived hydrogels.

Proc Natl Acad Sci U S A. 2025-2-25

[4]
Black Phosphorus Tagged Responsive Strontium Hydrogel Particles for Bone Defect Repair.

Adv Sci (Weinh). 2025-1

[5]
Anisotropic Liesegang pattern for the nonlinear elastic biomineral-hydrogel complex.

Sci Adv. 2024-4-26

[6]
A High-Density Hydrogen Bond Locking Strategy for Constructing Anisotropic High-Strength Hydrogel-Based Meniscus Substitute.

Adv Sci (Weinh). 2024-6

[7]
3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration.

Regen Biomater. 2024-2-9

[8]
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.

Prog Mater Sci. 2023-10

[9]
Hydrogel fibers for wearable sensors and soft actuators.

iScience. 2023-5-3

本文引用的文献

[1]
Tailoring micro/nano-fibers for biomedical applications.

Bioact Mater. 2022-4-25

[2]
Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy.

Bioact Mater. 2022-1-19

[3]
Interplay between mechanics and signalling in regulating cell fate.

Nat Rev Mol Cell Biol. 2022-7

[4]
Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states.

Sci Adv. 2022-3-18

[5]
Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics.

Bioact Mater. 2021-7-6

[6]
Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications.

Bioact Mater. 2021-4-15

[7]
Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.

Chem Rev. 2021-4-28

[8]
Strong tough hydrogels via the synergy of freeze-casting and salting out.

Nature. 2021-2

[9]
Discoveries in structure and physiology of mechanically activated ion channels.

Nature. 2020-11

[10]
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity.

Nat Rev Cardiol. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索