Suppr超能文献

通过源自铜冶炼渣的铁铜双金属中空纳米反应器促进过氧单硫酸盐活化以高效降解有机物:铜的双重作用

Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu.

作者信息

Yan Cuirong, Cai Xiunan, Zhou Xintao, Luo Zhongqiu, Deng Jiguang, Tian Xincong, Shi Jinyu, Li Wenhao, Luo Yongming

机构信息

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China.

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt A):858-871. doi: 10.1016/j.jcis.2024.08.203. Epub 2024 Aug 27.

Abstract

Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (CuFeSi) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for CuFeSi, 75 times higher than that of CuFeSi (0.0024 up to 0.18 M‧min). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that CuFeSi has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the CuFeSi. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.

摘要

从可持续发展的角度来看,在构建类芬顿催化剂过程中对富铁冶金炉渣进行增值利用具有诱人的潜力。首次将铜冶炼渣(CSS)用作前驱体,合成中空海胆状Fe-Cu纳米反应器(CuFeSi),以活化过一硫酸盐(PMS)用于降解盐酸金霉素(CTC)。由于Cu的诱导和改性,在催化剂中形成了超通道和纳米尺寸的空腔,这不仅促进了硅酸盐的原位生长以及由于SiO微球蚀刻而形成空腔,还通过纳米片的扭曲和旋转导致了纳米管的生成。研究发现,CuFeSi在10分钟内可实现100%的CTC降解率,比CuFeSi(从0.0024提高到0.18M‧min)高75倍。独特的纳米受限微环境结构可使反应物在催化剂空腔中富集,延长分子停留时间,并提高活性物种的利用效率。密度泛函理论(DFT)计算表明,CuFeSi对PMS具有很强的吸附能和优异的电子传输能力,Fe-Fe位点主要负责PMS的活化,而Cu有助于加速Fe(II)/Fe(Ⅲ)循环并提高催化效率。连续试验中优异的矿化率(10分钟内达到83.32%)和对CTC的高效处理证实了CuFeSi的高活性和稳定性。这项工作为合理设计基于固体废物的环保功能材料提供了新思路,旨在巩固其在高级废水处理中的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验