Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
Biochemistry. 2024 Sep 17;63(18):2245-2256. doi: 10.1021/acs.biochem.4c00217. Epub 2024 Sep 2.
Type 1 diabetes results from the autoimmune destruction of pancreatic insulin-producing β-cells, primarily targeted by autoreactive T cells that recognize insulin B9-23 peptides as antigens. Using drift tube ion mobility spectrometry-mass spectrometry, transmission electron microscopy, and two-dimensional infrared spectroscopy, we characterized mouse insulin 1 B9-23 (Ins1 B9-23), insulin 2 B9-23 (Ins2 B9-23), along with two of their mutants, Ins2 B9-23 Y16A and Ins2 B9-23 C19S. Our findings indicate that Ins1 B9-23 and the Ins2 Y16A mutant exhibit rapid fibril formation, whereas Ins2 B9-23 and the Ins2 C19S mutant show slower fibrillization and a structural rearrangement from globular protofibrils to fibrillar aggregates. These differences in aggregation behaviors also manifest in interactions with (-)epigallocatechin gallate (EGCG), a canonical amyloid inhibitor. EGCG effectively disrupts the fibrils formed by Ins1 B9-23 and the Y16A mutant. However, it proves ineffective in preventing fibril formation of Ins2 B9-23 and the C19S mutant. These results establish a strong correlation between the aggregation behaviors of these peptides and their divergent effects on anti-islet autoimmunity.
1 型糖尿病是由胰腺胰岛素产生β细胞的自身免疫破坏引起的,主要针对自身反应性 T 细胞,这些细胞将胰岛素 B9-23 肽识别为抗原。使用漂移管离子迁移谱-质谱、透射电子显微镜和二维红外光谱,我们对小鼠胰岛素 1 B9-23(Ins1 B9-23)、胰岛素 2 B9-23(Ins2 B9-23)以及它们的两个突变体 Ins2 B9-23 Y16A 和 Ins2 B9-23 C19S 进行了表征。我们的研究结果表明,Ins1 B9-23 和 Ins2 Y16A 突变体表现出快速纤维形成,而 Ins2 B9-23 和 Ins2 C19S 突变体则表现出较慢的纤维化和从球状原纤维到纤维状聚集物的结构重排。这些聚集行为的差异也表现在与(-)表没食子儿茶素没食子酸酯(EGCG)的相互作用上,EGCG 是一种典型的淀粉样蛋白抑制剂。EGCG 能有效破坏 Ins1 B9-23 和 Y16A 突变体形成的纤维。然而,它在防止 Ins2 B9-23 和 C19S 突变体形成纤维方面没有效果。这些结果确立了这些肽的聚集行为与其对胰岛自身免疫的不同影响之间的强相关性。