从相干性到功能:探索化学系统中的联系。
From Coherence to Function: Exploring the Connection in Chemical Systems.
作者信息
Rather Shahnawaz R, Scholes Gregory D, Chen Lin X
机构信息
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States.
Department of Chemistry, Princeton University, Princeton, New Jersey 08541, United States.
出版信息
Acc Chem Res. 2024 Sep 17;57(18):2620-2630. doi: 10.1021/acs.accounts.4c00312. Epub 2024 Sep 2.
ConspectusThe role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements.In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories, such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate, the pathway from reactants to products, is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked.In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photoinduced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into the rapid decoherence, or loss of phase and amplitude correlations, of vibrational coherences along promoter vibrations during subpicosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from the Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics rather than by the laser pulse in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to a dinitrogen stretching vibration, energizing the dinitrogen bond.
概述
在过去二十年中,量子力学相干性或相干叠加态在激发态过程中的作用受到了广泛关注,这主要归功于超快激光光谱学的进展。即使面对能量无序和环境波动,这些相干效应也有望提高功能相关过程的效率和稳健性。深入理解相干性促使我们在量子力学层面揭示由有序和同步控制的机制及动力学,设想通过光学控制相干性来增强分子和材料系统中的功能或创造新功能。在这个前沿领域,电子和振动动力学之间的相互作用,特别是振动在引导电子动力学方面的影响,已成为主导原则。在这里,两个能量上不同的量子自由度协同工作,决定激发态反应的轨迹。此外,由于振动自由度与分子或材料系统的结构组成直接相关,通过定制某些结构元素可能会激发新的分子设计。
在化学动力学领域,我们对化学转化动力学的理解基于诸如过渡态理论、活化速率理论和马库斯理论等基础理论。这些理论通过考虑反应物转化为产物必须克服的能量障碍来阐明反应速率。这些障碍是由反应系统内能量间隙波动的随机性质克服的,强调反应坐标,即从反应物到产物的途径,不是由特定的振动运动严格定义的,而是包括各种各样的分子运动。虽然对特定分子内振动模式的参与了解较少,但它们在某些情况下的重要性不容忽视。
在本综述中,我们总结了关键的实验发现,这些发现为三个典型过程中由最先进的超快激光光谱提供的包含激发态的复杂电子 - 振动轨迹提供了更深入的见解:光诱导电子转移、单重态 - 三重态系间窜越以及分子系统中的分子内振动能量流动。我们深入研究了一系列双核铂配合物在亚皮秒系间窜越动力学过程中,沿促进振动的振动相干性的快速退相干,即相位和振幅相关性的丧失。这种快速退相干说明了从弗兰克 - 康登态到曲线交叉区域的振动驱动反应途径。我们还探索了在这些系统中由脉冲反应动力学而非激光脉冲诱导产生的新振动相干性,这揭示了特定的能量耗散途径,从而揭示了产物侧曲线交叉附近反应轨迹的进展。振动相干性的另一个特性,振幅,揭示了在含有非反应性二氮底物的三联吡啶 - 钼配合物的电子激发态中,能量如何从一个振动转移到另一个振动。振动能量的轻微变化引发准共振相互作用,导致相长波包干涉,并最终从弗兰克 - 康登活性的三联吡啶振动到二氮伸缩振动的分子内振动重新分布,为二氮键提供能量。