Suppr超能文献

代谢网络重布线和温度依赖性调控提高大肠杆菌中 3-脱氢莽草酸的产量。

Metabolic network rewiring and temperature-dependent regulation for enhanced 3-dehydroshikimate production in Escherichia coli.

机构信息

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

出版信息

Bioresour Technol. 2024 Nov;412:131403. doi: 10.1016/j.biortech.2024.131403. Epub 2024 Aug 31.

Abstract

The cyclohexane organic acid 3-dehydroshikimate (DHS) has potent antioxidant activity and is widely utilised in chemical and pharmaceutical industries. However, its production requires a long fermentation with a suboptimal yield and low productivity, and a disproportionate growth-to-production ratio impedes the upscaling of DHS synthesis in microbial cell factories. To overcome these limitations, competing and degradation pathways were knocked-out and key enzymes were balanced in an engineered Escherichia coli production strain, resulting in 12.2 g/L DHS. Furthermore, to achieve equilibrium between cell growth and DHS production, a CRISPRi-based temperature-responsive multi-component repressor system was developed to dynamically control the expression of critical genes (pykF and aroE), resulting in a 30-fold increase in DHS titer. After 33 h fermentation in 5 L bioreactor, the DHS titer, productivity and yield reached 94.2 g/L, 2.8 g/L/h and 55 % glucose conversion, respectively. The results provided valuable insight into the production of DHS and its derivatives.

摘要

环己烷有机酸 3-脱氢莽草酸(DHS)具有很强的抗氧化活性,广泛应用于化工和制药行业。然而,其生产需要长时间发酵,产率和生产力都不理想,而且不成比例的生长-生产比阻碍了 DHS 在微生物细胞工厂中的大规模合成。为了克服这些限制,我们敲除了竞争和降解途径,并在工程大肠杆菌生产菌株中平衡了关键酶,从而得到 12.2 g/L 的 DHS。此外,为了在细胞生长和 DHS 生产之间达到平衡,我们开发了基于 CRISPRi 的温度响应多组分抑制剂系统来动态控制关键基因(pykF 和 aroE)的表达,从而使 DHS 的产量增加了 30 倍。在 5 L 生物反应器中发酵 33 h 后,DHS 的产量、生产效率和葡萄糖转化率分别达到 94.2 g/L、2.8 g/L/h 和 55%。这些结果为 DHS 及其衍生物的生产提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验