Li Zhaoran, Long Linshuang, Tang Zhipeng, Chen Xiaopeng, Huang Zizhen, Ren Yuan, Liu Yuchi, Ye Hong
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47639-47645. doi: 10.1021/acsami.4c09758. Epub 2024 Sep 2.
Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 μm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 μm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
对与材料的表面结构和光学参数密切相关的红外发射率进行调控,是实现动态热管理的关键途径。在本研究中,我们设计了一种超材料,它由嵌入可拉伸弹性体基底表面的铝盘阵列组成。机械拉伸引起的变形允许对表面结构和等效光学参数进行动态修改,从而实现对发射率的动态控制。通过使用弹性体聚二甲基硅氧烷(PDMS)作为基底,拉伸PDMS可改变盘间微结构间隙。通过理论计算,这种方法的合理性通过等离子体共振的激发以及高吸收性PDMS暴露面积的变化得以解释,并且揭示出用于调节红外发射率的最佳结构为直径6μm、高度100nm。基于此设计,我们制备了周期为7μm和7.9μm的样品,并通过实验证明周期的变化会导致发射率的变化,进而实现热控性能的可调性。在0.28W/cm²的加热功率下,两个样品之间的温差达到44.1℃。此外,我们构建了一个拉伸平台,能够实现原位机械拉伸以实现发射率的动态变化。在13%的双轴拉伸应变下,样品的整体红外发射率从0.32增加到0.5,实现了56%的整体红外发射率调制率。该材料有望实现动态热管理。