Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nat Rev Chem. 2024 Oct;8(10):762-775. doi: 10.1038/s41570-024-00646-7. Epub 2024 Sep 2.
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
从氮气还原到水氧化,金属酶催化的化学转化是全球地球化学和生物化学循环的基础。这些反应代表了已知的一些最具动力学和热力学挑战性的过程,需要电子和质子这一自然界基本构建块的复杂协调,以达到极高的精度和准确性。许多金属酶中的催化速率决定步骤包括蛋白质结构重排,这表明自然界已经进化到利用蛋白质分子结构的宏观变化来控制金属辅因子电子结构的亚原子变化。氮酶、光合系统 II 和核糖核苷酸还原酶中的质子偶联电子转移机制就是这种分子和电子结构控制相互作用的范例。我们展示了对这些系统中的每一个系统进行几十年研究的成果,并阐明了在这些金属酶关键因素中结构变化与功能结果之间相互作用的已知情况。