Liu Yi, Li Fu, Tang Liwei, Liu Xitao, Zeng Xi, Li Wenjing, Rong Hao, Zhang Hongbin, Luo Junhua, Sun Zhihua
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China.
University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413898. doi: 10.1002/anie.202413898. Epub 2024 Oct 25.
Antiferroelectric (AFE) has emerged as a promising branch of electroactive materials, due to intriguing physical attributes stemming from the electric field-induced antipolar-to-polar phase transformation. However, the requirement of extremely high electric field strength to switch adjacent sublattice polarization poses great challenges for exploiting new molecular AFE system. Although photoirradiation is striking as a noncontact and nondestructive manipulation tool to optimize physical properties, optical control of antiferroelectricity still remains unexplored. Here, by adopting light-sensitive I anion into 2D perovskite family, we design a new I -intercalated molecular AFE of (t-ACH)EAPbI(I) ⋅ ((HO)(HO)) (1, t-ACH=trans-4-aminomethyl-1-cyclohexanecarboxylate, EA=ethylammonium). The I -intercalating gives an ultra-narrow band gap of 1.65 eV with strong absorption. In term of AFE structure, the anti-parallel alignment of electric dipoles results in a large spontaneous polarization of 4.3 μC/cm. Strikingly, 1 merely shows AFE behaviour in the dark even under ultrahigh voltage, while the field-induced ferroelectric state can be facilely obtained upon visible illumination. Such unprecedented visible-photo-assisted phase switching ascribes to the incorporation of photoactive I anions that reduces AFE-to-ferroelectric switching barrier. This pioneering work on the photo-assisting transformation of ferroic orders paves a way to develop future photoactive materials with potential applications.
反铁电体(AFE)作为电活性材料中一个很有前景的分支已崭露头角,这归因于电场诱导的反极到极相变所产生的有趣物理特性。然而,切换相邻亚晶格极化需要极高的电场强度,这对开发新型分子反铁电体系统构成了巨大挑战。尽管光辐照作为一种优化物理性能的非接触、无损操纵工具备受瞩目,但反铁电体的光学控制仍未得到探索。在此,通过将光敏碘离子引入二维钙钛矿家族,我们设计了一种新型的碘离子插层分子反铁电体(t-ACH)EAPbI(I)⋅((HO)(HO))(1,t-ACH = 反式-4-氨甲基-1-环己烷羧酸盐,EA = 乙铵)。碘离子插层赋予了1.65 eV的超窄带隙和强吸收。就反铁电体结构而言,电偶极的反平行排列导致了4.3 μC/cm²的大自发极化。引人注目的是,即使在超高电压下,1仅在黑暗中表现出反铁电体行为,而在可见光照射下可以轻松获得场诱导铁电态。这种前所未有的可见光辅助相转变归因于光活性碘离子的掺入,它降低了反铁电体到铁电体的转变势垒。这项关于铁性有序光辅助转变的开创性工作为开发具有潜在应用的未来光活性材料铺平了道路。