Sarfraz Mahnoor, Khan Masood
Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan.
Heliyon. 2024 Aug 13;10(16):e36169. doi: 10.1016/j.heliyon.2024.e36169. eCollection 2024 Aug 30.
This study analyses the flow of a hybrid nanofluid, combining engine oil with multi-walled carbon nanotubes and titania nanoparticles. The flow occurs over a vertically inclined, electrically conducting, heat-producing/absorbing surface that is both permeable and expanding/contracting. The analysis incorporates influential factors such as buoyancy forces, heat source/sink effects, and convective conditions with Cattaneo-Christov theory and Hamilton-Crosser model. The mathematical model is numerically solved using the bvp4c solver in MATLAB. The expansion/contraction of the surface significantly impacts the boundary layer thickness, leading to changes in velocity, temperature, and various physical parameters. This study is significant due to the nanoparticles' enhanced optical and mechanical properties, offering potential applications in diverse fields. A notable finding is the reduced fluid velocity and temperature within a porous medium with permeability. These findings present opportunities for enhancing heat and fluid transmission in various systems, including those related to energy storage.
本研究分析了一种混合纳米流体的流动情况,该混合纳米流体由发动机油与多壁碳纳米管和二氧化钛纳米颗粒组成。流动发生在一个垂直倾斜、导电、产热/吸热的表面上,该表面既具有渗透性又会膨胀/收缩。分析中纳入了诸如浮力、热源/热汇效应以及对流条件等影响因素,并采用了卡塔尼奥 - 克里斯托夫理论和汉密尔顿 - 克罗斯模型。使用MATLAB中的bvp4c求解器对数学模型进行了数值求解。表面的膨胀/收缩对边界层厚度有显著影响,导致速度、温度和各种物理参数发生变化。由于纳米颗粒具有增强的光学和机械性能,本研究具有重要意义,为不同领域提供了潜在应用。一个显著的发现是在具有渗透性的多孔介质中流体速度和温度降低。这些发现为增强包括与能量存储相关的各种系统中的热传递和流体传输提供了机会。