Mabena Kgomotso G, Nomngongo Philiswa Nosizo, Mketo Nomvano
Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa Florida Science Campus 1709 Johannesburg South Africa
Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, P.O. Box 17011 Johannesburg 2028 South Africa.
RSC Adv. 2024 Sep 2;14(38):27990-27998. doi: 10.1039/d4ra04427d. eCollection 2024 Aug 29.
This study describes the synthesis and characterization of a magnetic cellulose gold nanocomposite (MCNC@Au) for magnetic solid phase (m-SPE) extraction of total sulfur content in liquid fuel samples followed by analysis using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The nanocomposite was prepared using an co-precipitation method and characterization results from FTIR, P-XRD, TEM and SEM-EDX techniques confirmed the formation of the targeted nanocomposite. To achieve good extraction efficiency, the 2-level half-fractional factorial design and central composite design were used to investigate the most influential parameters of the proposed m-SPE method. The multivariate optimization results showed that efficient extraction was obtained when 27.5 mg sorbent mass, 35 minutes sorption time, 200 μL eluent volume and 8 min elution time were used. The optimal parameters resulted in excellent accuracy (98.8%), precision (1.7%), LOD (0.039 mg L), LOQ (0.129 mg L), MDL (0.014 μg g) and MQL (0.047 μg g). The optimized and validated m-SPE method was applied in real fuel oil samples, revealing a total sulfur content range of 13.20 ± 0.05-15.70 ± 0.02 μg g for crude oil, 7.32 ± 0.01-9.12 ± 0.03 for μg g, 8.41 ± 0.02-9.15 ± 0.06 μg g for gasoline and 9.10 ± 0.02 and 9.70 ± 0.04 μg g for kerosene samples, sugesting high concentration levels of sulfur in crude oils. However, the obtained sulfur content levels are within the accepted standards in fuel oils, except for those of crude oil and kerosene samples. Therefore, the proposed m-SPE method followed by ICP-OES analysis has proven to be an alternative procedure for rapid and selective quantification of total sulfur in fuel samples.
本研究描述了一种磁性纤维素金纳米复合材料(MCNC@Au)的合成与表征,该材料用于磁性固相萃取(m-SPE)液体燃料样品中的总硫含量,随后使用电感耦合等离子体发射光谱法(ICP-OES)进行分析。该纳米复合材料采用共沉淀法制备,傅里叶变换红外光谱(FTIR)、粉末X射线衍射(P-XRD)、透射电子显微镜(TEM)和扫描电子显微镜-能谱仪(SEM-EDX)技术的表征结果证实了目标纳米复合材料的形成。为了获得良好的萃取效率,采用二水平半分式析因设计和中心复合设计来研究所提出的m-SPE方法中最具影响力的参数。多变量优化结果表明,当使用27.5 mg吸附剂质量、35分钟吸附时间、200 μL洗脱剂体积和8分钟洗脱时间时,可实现高效萃取。最佳参数具有出色的准确度(98.8%)、精密度(1.7%)、检测限(0.039 mg/L)、定量限(0.129 mg/L)、方法检出限(0.014 μg/g)和方法定量限(0.047 μg/g)。经过优化和验证的m-SPE方法应用于实际燃料油样品,结果显示原油的总硫含量范围为13.20±0.05 - 15.70±0.02 μg/g,柴油为7.32±0.01 - 9.12±0.03 μg/g,汽油为8.41±0.02 - 9.15±0.06 μg/g,煤油为9.10±0.02和9.70±0.04 μg/g,这表明原油中的硫含量较高。然而,除原油和煤油样品外,所获得的硫含量水平均在燃料油的可接受标准范围内。因此,所提出的m-SPE方法结合ICP-OES分析已被证明是一种快速、选择性定量燃料样品中总硫的替代方法。