Suppr超能文献

利用 3D 密集 U-Net 对霍奇金淋巴瘤患者 18 F-FDG PET/CT 图像中的病灶进行自动检测和分割。

Automatic detection and segmentation of lesions in 18 F-FDG PET/CT imaging of patients with Hodgkin lymphoma using 3D dense U-Net.

机构信息

Department of Mathematics and Computer Science, Shahed University, .

Research Center for Nuclear Medicine, Tehran University of Medical Sciences, .

出版信息

Nucl Med Commun. 2024 Nov 1;45(11):963-973. doi: 10.1097/MNM.0000000000001892. Epub 2024 Oct 8.

Abstract

OBJECTIVE

The accuracy of automatic tumor segmentation in PET/computed tomography (PET/CT) images is crucial for the effective treatment and monitoring of Hodgkin lymphoma. This study aims to address the challenges faced by certain segmentation algorithms in accurately differentiating lymphoma from normal organ uptakes due to PET image resolution and tumor heterogeneity.

MATERIALS AND METHODS

Variants of the encoder-decoder architectures are state-of-the-art models for image segmentation. Among these kinds of architectures, U-Net is one of the most famous and predominant for medical image segmentation. In this study, we propose a fully automatic approach for Hodgkin lymphoma segmentation that combines U-Net and DenseNet architectures to reduce network loss for very small lesions, which is trained using the Tversky loss function. The hypothesis is that the fusion of these two deep learning models can improve the accuracy and robustness of Hodgkin lymphoma segmentation. A dataset with 141 samples was used to train our proposed network. Also, to test and evaluate the proposed network, we allocated two separate datasets of 20 samples.

RESULTS

We achieved 0.759 as the mean Dice similarity coefficient with a median value of 0.767, and interquartile range (0.647-0.837). A good agreement was observed between the ground truth of test images against the predicted volume with precision and recall scores of 0.798 and 0.763, respectively.

CONCLUSION

This study demonstrates that the integration of U-Net and DenseNet architectures, along with the Tversky loss function, can significantly enhance the accuracy of Hodgkin lymphoma segmentation in PET/CT images compared to similar studies.

摘要

目的

在 PET/CT 图像中,自动肿瘤分割的准确性对于霍奇金淋巴瘤的有效治疗和监测至关重要。本研究旨在解决某些分割算法由于 PET 图像分辨率和肿瘤异质性而难以准确区分淋巴瘤与正常器官摄取的问题。

材料与方法

编解码器架构的变体是图像分割的最新模型。在这些架构中,U-Net 是用于医学图像分割的最著名和主要的架构之一。在本研究中,我们提出了一种结合 U-Net 和 DenseNet 架构的完全自动霍奇金淋巴瘤分割方法,以减少对非常小病变的网络损失,该方法使用 Tversky 损失函数进行训练。假设是融合这两种深度学习模型可以提高霍奇金淋巴瘤分割的准确性和鲁棒性。我们使用 141 个样本的数据集来训练我们提出的网络。此外,为了测试和评估所提出的网络,我们分配了两个单独的 20 个样本数据集。

结果

我们获得了 0.759 的平均 Dice 相似系数,中位数为 0.767,四分位距为 0.647-0.837。在测试图像的真实值与预测体积之间观察到了良好的一致性,精度和召回率分别为 0.798 和 0.763。

结论

与类似的研究相比,本研究表明,U-Net 和 DenseNet 架构的结合以及 Tversky 损失函数可以显著提高 PET/CT 图像中霍奇金淋巴瘤分割的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验