Suppr超能文献

使用卷积神经网络对 3D FDG-PET/CT 上弥漫性大 B 细胞淋巴瘤病变进行全自动分割,以预测总代谢肿瘤体积。

Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network.

机构信息

Department of Nuclear Medicine, CHU H. Mondor, AP-HP, F-94010, Créteil, France.

LYmphoma Study Association (LYSA), Pierre-Bénite, France.

出版信息

Eur J Nucl Med Mol Imaging. 2021 May;48(5):1362-1370. doi: 10.1007/s00259-020-05080-7. Epub 2020 Oct 24.

Abstract

PURPOSE

Lymphoma lesion detection and segmentation on whole-body FDG-PET/CT are a challenging task because of the diversity of involved nodes, organs or physiological uptakes. We sought to investigate the performances of a three-dimensional (3D) convolutional neural network (CNN) to automatically segment total metabolic tumour volume (TMTV) in large datasets of patients with diffuse large B cell lymphoma (DLBCL).

METHODS

The dataset contained pre-therapy FDG-PET/CT from 733 DLBCL patients of 2 prospective LYmphoma Study Association (LYSA) trials. The first cohort (n = 639) was used for training using a 5-fold cross validation scheme. The second cohort (n = 94) was used for external validation of TMTV predictions. Ground truth masks were manually obtained after a 41% SUVmax adaptive thresholding of lymphoma lesions. A 3D U-net architecture with 2 input channels for PET and CT was trained on patches randomly sampled within PET/CTs with a summed cross entropy and Dice similarity coefficient (DSC) loss. Segmentation performance was assessed by the DSC and Jaccard coefficients. Finally, TMTV predictions were validated on the second independent cohort.

RESULTS

Mean DSC and Jaccard coefficients (± standard deviation) in the validations set were 0.73 ± 0.20 and 0.68 ± 0.21, respectively. An underestimation of mean TMTV by - 12 mL (2.8%) ± 263 was found in the validation sets of the first cohort (P = 0.27). In the second cohort, an underestimation of mean TMTV by - 116 mL (20.8%) ± 425 was statistically significant (P = 0.01).

CONCLUSION

Our CNN is a promising tool for automatic detection and segmentation of lymphoma lesions, despite slight underestimation of TMTV. The fully automatic and open-source features of this CNN will allow to increase both dissemination in routine practice and reproducibility of TMTV assessment in lymphoma patients.

摘要

目的

在全身 FDG-PET/CT 上检测和分割淋巴瘤病变是一项具有挑战性的任务,因为涉及的淋巴结、器官或生理摄取的多样性。我们试图研究一种三维(3D)卷积神经网络(CNN)的性能,以自动分割弥漫性大 B 细胞淋巴瘤(DLBCL)患者的大数据集的总代谢肿瘤体积(TMTV)。

方法

该数据集包含来自 2 项前瞻性 Lymphoma Study Association(LYSA)试验的 733 例 DLBCL 患者的治疗前 FDG-PET/CT。第一队列(n=639)使用 5 折交叉验证方案进行训练。第二队列(n=94)用于外部验证 TMTV 预测。在淋巴瘤病变的 41% SUVmax 自适应阈值后,手动获得地面真实掩模。使用 2 个输入通道的 3D U-net 架构对随机采样于 PET/CT 内的斑块进行训练,采用总和交叉熵和 Dice 相似系数(DSC)损失。通过 DSC 和 Jaccard 系数评估分割性能。最后,在第二个独立队列上验证 TMTV 预测。

结果

验证集的平均 DSC 和 Jaccard 系数(±标准偏差)分别为 0.73±0.20 和 0.68±0.21。在第一队列的验证集(P=0.27)中,发现 TMTV 的平均低估了-12 毫升(2.8%)±263。在第二队列中,TMTV 的平均低估-116 毫升(20.8%)±425具有统计学意义(P=0.01)。

结论

尽管 TMTV 存在轻微低估,但我们的 CNN 是一种用于自动检测和分割淋巴瘤病变的有前途的工具。该 CNN 的全自动和开源功能将允许增加弥漫性大 B 细胞淋巴瘤患者的 TMTV 评估的普及和可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验