Suppr超能文献

具有高效成核位点和增强水传输能力的激光构建仿生复合集雾表面

Laser-Constructed Bionic Composite Fog-Collecting Surfaces with Efficient Nucleation Sites and Enhanced Water Transport.

作者信息

Zhou Wen, Zhu Xiaohui, Zhao Lei, Hu Yuxue, Wei Linlin, Tian Guizhong, Feng Xiaoming

机构信息

College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

出版信息

Langmuir. 2024 Sep 17;40(37):19885-19895. doi: 10.1021/acs.langmuir.4c02917. Epub 2024 Sep 3.

Abstract

Fog collection effectively alleviates the current freshwater shortage; thus, enhancing its efficiency is crucial. Here, we report a novel bionic fog collection surface (Al@B-V) comprising composite superhydrophobic bumps integrated with superhydrophilic V-channel grooves. This surface, which has efficient fog nucleation points and enhanced water transport capabilities, effectively balances fog capture and water transport during the collection process, thereby achieving high-efficiency fog collection. Compared to ordinary aluminum-based surfaces, Al@B-V achieves a fog collection efficiency of up to 3.08 g·cm·h, three times higher than the original aluminum-based surface. Furthermore, the V-channel groove proposed in this study exhibits a water transport speed of up to 165 mm·s, which is remarkably approximately 80 times faster than the commonly used U-channel groove. Additionally, this V-channel groove can overcome gravity, transporting approximately 10 μL of liquid to the top even when placed at 90° inclination. It can directionally transport 10 μL of liquid over a distance of up to 151 mm on a plane. This novel microgroove design can be effectively applied in various fields, including liquid collection, directional transport, seawater desalination, microfluidics, and drug delivery.

摘要

雾收集有效地缓解了当前的淡水短缺问题;因此,提高其效率至关重要。在此,我们报告了一种新型仿生雾收集表面(Al@B-V),它由集成了超亲水V形通道凹槽的复合超疏水凸起组成。该表面具有高效的雾核化点和增强的水传输能力,在收集过程中有效地平衡了雾捕获和水传输,从而实现了高效的雾收集。与普通铝基表面相比,Al@B-V的雾收集效率高达3.08 g·cm·h,比原始铝基表面高出三倍。此外,本研究中提出的V形通道凹槽的水传输速度高达165 mm·s,明显比常用的U形通道凹槽快约80倍。此外,这种V形通道凹槽可以克服重力,即使在90°倾斜放置时也能将约10 μL的液体输送到顶部。它可以在平面上定向输送10 μL的液体,距离可达151 mm。这种新颖的微槽设计可以有效地应用于各个领域,包括液体收集、定向传输、海水淡化、微流体和药物递送。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验