College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
Small. 2024 Nov;20(48):e2402914. doi: 10.1002/smll.202402914. Epub 2024 Sep 3.
DNA amplifier circuits establish powerful tools to dynamically control molecular assembly for computation, sensing, and biological applications. However, the slow reaction speed remains a major barrier to their practical utility. Here, diverse fast DNA amplifier circuits termed toehold exchange polymerization (TEP) and toehold exchange catalysis (TEC) using toehold exchange-mediated assembly as a fundamental mechanism are built. Both TEP and TEC with a duplex and a hairpin can respond within minutes to diverse nucleic acid inputs with high fidelity. In addition, the circuits can amplify live-cell signals for fluorescence imaging target RNA dynamics and discriminating different cell lines. Compared with existing DNA circuits that involve time scales of hours for transducing small signals, TEP and TEC exhibit much faster dynamics, simpler design, and comparable sensitivity. These features make TEP and TEC promising platforms to develop programmable nucleic acid tools and devices and to create fast sensing and processing systems, amenable to wide practical applications.
DNA 放大器电路为计算、传感和生物应用中动态控制分子组装提供了强大的工具。然而,其缓慢的反应速度仍然是其实际应用的主要障碍。在这里,构建了多种称为链置换聚合(TEP)和链置换催化(TEC)的快速 DNA 放大器电路,它们使用链置换介导的组装作为基本机制。具有双链体和发夹结构的 TEP 和 TEC 可以在几分钟内以高保真度响应多种核酸输入。此外,这些电路可以放大活细胞信号,用于荧光成像目标 RNA 动力学和区分不同的细胞系。与涉及将小信号转换几个小时的现有 DNA 电路相比,TEP 和 TEC 表现出更快的动力学、更简单的设计和可比的灵敏度。这些特性使 TEP 和 TEC 成为开发可编程核酸工具和设备以及创建快速传感和处理系统的有前途的平台,适用于广泛的实际应用。