Suppr超能文献

大规模合成氮、硫共掺杂碳修饰的硫化亚铁复合材料作为用于锂/钠离子电池的新型阳极,性能增强。

Large-Scale Synthesis of N,S Codoped Carbon-Modified FeS Composites as a Novel Anode for Lithium/Sodium Ion Batteries with Enhanced Performance.

作者信息

Qin Yanmin, Guo Mengyuan, Fang Shengfan, Guo Liping, Zhang Huipei, Qi Luyao, Deng Binglu, Bao Haifeng

机构信息

State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.

Patent Examination Cooperation Hubei Center of the Patent Office, CNIPA, Wuhan 430075, China.

出版信息

Nano Lett. 2024 Sep 18;24(37):11385-11392. doi: 10.1021/acs.nanolett.4c01912. Epub 2024 Sep 3.

Abstract

To overcome obstacles hindering the commercialization of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), we introduce a cost-effective single-step sulfurization strategy for synthesizing iron sulfide (FeS) nanohybrids, augmented by N,S codoped carbon. The resulting N,S codoped carbon-coated FeS (FeS@NSC) electrode exhibits exceptional potential as a highly reversible anode material for both LIBs and SIBs. With impressive initial discharge and charge capacities (1658.2 and 1254.9 mAh g for LIBs and 1450.9 and 1077.1 mAh g for SIBs), the electrode maintains substantial capacity retention (900 mA h g after 1000 cycles for LIBs and 492.5 mA h g after 600 cycles for SIBs at 1.0 A g). The LiMnO//FeS@NSC and NaV(PO)//FeS@NSC full batteries can maintain excellent reversible capacity and robust cycling stability. Ex situ and in situ X-ray diffraction, density functional theory (DFT) calculations, and kinetics analysis confirm the promising energy storage potential of the FeS@NSC composite.

摘要

为克服阻碍锂离子电池(LIBs)和钠离子电池(SIBs)商业化的障碍,我们引入了一种具有成本效益的单步硫化策略,用于合成由氮、硫共掺杂碳增强的硫化铁(FeS)纳米杂化物。所得的氮、硫共掺杂碳包覆的FeS(FeS@NSC)电极作为LIBs和SIBs的高度可逆阳极材料展现出卓越的潜力。该电极具有令人印象深刻的初始放电和充电容量(LIBs分别为1658.2和1254.9 mAh g,SIBs分别为1450.9和1077.1 mAh g),在1.0 A g下,该电极保持了可观的容量保持率(LIBs在1000次循环后为900 mA h g,SIBs在600次循环后为492.5 mA h g)。LiMnO//FeS@NSC和NaV(PO)//FeS@NSC全电池能够保持优异的可逆容量和强大的循环稳定性。非原位和原位X射线衍射、密度泛函理论(DFT)计算以及动力学分析证实了FeS@NSC复合材料具有可观的储能潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验