Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China.
ACS Nano. 2024 Sep 17;18(37):25795-25812. doi: 10.1021/acsnano.4c08574. Epub 2024 Sep 3.
The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both and . This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.
细胞铁死亡的激活在肿瘤治疗中很有前景。然而,铁死亡同时受到抗铁死亡物质的抑制,包括谷胱甘肽过氧化物酶 4(GPX4)、二氢乳清酸脱氢酶(DHODH)和铁死亡抑制蛋白 1(FSP1)。因此,同时抑制这三种抗铁死亡物质以激活铁死亡是非常理想的,但具有挑战性。在这里,我们合理设计了一种负载布喹那(BQR)和利昔古肽(YC-1)的中空铁掺杂 SiO2 基纳米酶(FeSHS),命名为 FeSHS/BQR/YC-1-PEG,用于肿瘤铁死亡激活。FeSHS 通过铁离子对 SiO2 纳米颗粒的连续蚀刻而开发,其具有 pH/谷胱甘肽响应性生物降解性,并模拟过氧化物酶、谷胱甘肽氧化酶和 NAD(P)H 氧化酶的活性。具体来说,FeSHS 消耗谷胱甘肽和 NAD(P)H 氧化会通过破坏 NAD(P)H/FSP1/泛醌轴来抑制 GPX4 的表达并抑制 FSP1。此外,释放的 BQR 可以抑制 DHODH 的表达。同时,YC-1 能够通过破坏 HIF-1α/脂滴轴增加细胞多不饱和脂肪酸(PUFAs)。我们设计的纳米平台通过提高铁和 PUFAs 的水平,同时破坏 GPX4/DHODH/FSP1 抑制途径,显示出良好的治疗效果。这项工作阐明了合理设计用于铁死亡激活和未来肿瘤治疗的智能纳米平台。
Colloids Surf B Biointerfaces. 2024-7
J Nanobiotechnology. 2024-4-24
Nature. 2019-10-21
Nature. 2023-7
Eur J Pharm Biopharm. 2024-11
Drug Deliv. 2025-12
Funct Integr Genomics. 2025-3-25