Suppr超能文献

理解个体化风险预测工具(VALUE-PERSARC)如何支持软组织肉瘤患者在日常临床实践中做出知情治疗决策——一项混合方法研究。

Understanding how a personalized risk prediction tool (VALUE-PERSARC) supports informed treatment decisions of soft-tissue sarcomas patients in daily clinical practice - A mixed methods study.

机构信息

Department of Biomedical Data Sciences, Medical Decision Making, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.

Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, the Netherlands.

出版信息

Eur J Cancer. 2024 Oct;210:114269. doi: 10.1016/j.ejca.2024.114269. Epub 2024 Aug 9.

Abstract

INTRODUCTION

Risk prediction models (RPM) can help soft-tissue sarcoma(STS) patients and clinicians make informed treatment decisions by providing them with estimates of (disease-free) survival for different treatment options. However, it is unknown how RPMs are used in the clinical encounter to support decision-making. This study aimed to understand how a PERsonalised SARcoma Care (PERSARC) RPM is used to support treatment decisions and which barriers and facilitators influence its use in daily clinical practice.

METHODS

A convergent mixed-methods design is used to understand how PERSARC is integrated in the clinical encounter in three Dutch sarcoma centers. Data were collected using qualitative interviews with STS patients (n = 15) and clinicians (n = 8), quantitative surveys (n = 50) and audiotaped consultations (n = 30). Qualitative data were analyzed using thematic analysis and integrated with quantitative data through merging guided by the SEIPS model.

RESULTS

PERSARC was generally used to support clinicians' proposed treatment plan and not to help patients weigh available treatment options. Use of PERSARC in decision-making was hampered by clinician's doubts about whether there were multiple viable treatment options,the accuracy of risk estimates, and time constraints. On the other hand, use of PERSARC facilitated clinicians to estimate and communicate the expected benefit of adjuvant therapy to patients.

CONCLUSION

PERSARC was not used to support informed treatment decision-making in STS patients. Integrating RPMs into clinical consultations requires acknowledgement of their benefits in facilitating clinicians' estimation of the expected benefit of adjuvant therapies and information provision to patients, while also considering concerns regarding RPM quality and treatment options' viability.

摘要

简介

风险预测模型(RPM)可以通过为患者提供不同治疗方案的(无病)生存估计,帮助软组织肉瘤(STS)患者和临床医生做出明智的治疗决策。然而,目前尚不清楚 RPM 在临床诊疗中如何用于支持决策。本研究旨在了解如何使用个性化肉瘤护理(PERSARC)RPM 来支持治疗决策,以及哪些障碍和促进因素会影响其在日常临床实践中的使用。

方法

采用收敛混合方法设计,了解 PERSARC 在荷兰 3 个肉瘤中心的临床诊疗中是如何整合的。使用 STS 患者(n=15)和临床医生(n=8)的定性访谈、定量调查(n=50)和录音咨询(n=30)收集数据。使用主题分析对定性数据进行分析,并通过 SEIPS 模型指导的合并将其与定量数据进行整合。

结果

PERSARC 通常用于支持临床医生提出的治疗计划,而不是帮助患者权衡可用的治疗方案。在决策中使用 PERSARC 受到了一些因素的阻碍,如临床医生对是否有多种可行的治疗方案、风险估计的准确性以及时间限制的疑虑。另一方面,使用 PERSARC 有助于临床医生向患者估计和传达辅助治疗的预期获益。

结论

在 STS 患者中,PERSARC 并未用于支持知情的治疗决策。将 RPM 整合到临床诊疗中需要认识到它们在促进临床医生估计辅助治疗的预期获益和向患者提供信息方面的优势,同时也要考虑到对 RPM 质量和治疗方案可行性的担忧。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验