Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
J Hazard Mater. 2024 Nov 5;479:135652. doi: 10.1016/j.jhazmat.2024.135652. Epub 2024 Aug 27.
Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.001 ∼ 1 mg/L) on microalgae under diverse pH (6.7 ∼ 9.1), dissolved organic matter (DOM, 1.5 ∼ 25.1 mg/L), salinity (1 ∼ 417 mg/L) and temperature (23 ∼ 33 °C) within the Canadian prairie context. The toxic mechanism was revealed by multiple toxic endpoints. The combined toxicity of NPs, Cu and PHE within prairie aquatic ecosystems was assessed by the developed FCTA-multivariate regression model. Contrary to individual effects, NPs exhibited a promotional effect on microalgae growth under complex environmental conditions. Although Cu and PHE were more hazardous, NPs mitigated their single toxicity. Environmental conditions and exposure times significantly influenced the main effects and interactions of NPs, Cu and PHE. The synergistic effect of NPsCu and NPsPHE on microalgae growth became antagonistic with increased pH or DOM. Microalgae in the Souris River, Saskatchewan, were projected to suffer the most toxic effects. Our findings have significant implications for the risk management of NPs.
关于纳米塑料(NPs)与共存污染物在不同环境条件下相互作用的数据有限。在此,开发了一种析因复合毒性分析方法(FCTA),以分析 NPs(0∼60mg/L)、铜(Cu,0.2∼6mg/L)和菲(PHE,0.001∼1mg/L)在不同 pH 值(6.7∼9.1)、溶解有机物(DOM,1.5∼25.1mg/L)、盐度(1∼417mg/L)和温度(23∼33°C)条件下对微藻的时间依赖性复合效应。通过多个毒性终点揭示了毒性机制。利用所开发的 FCTA-多元回归模型评估了 NPs、Cu 和 PHE 在加拿大草原水生生态系统中的联合毒性。与单一效应相反,在复杂的环境条件下,NPs 对微藻生长表现出促进作用。尽管 Cu 和 PHE 的危害性更大,但 NPs 减轻了它们的单一毒性。环境条件和暴露时间显著影响了 NPs、Cu 和 PHE 的主要效应和相互作用。随着 pH 值或 DOM 的增加,NPsCu 和 NPsPHE 对微藻生长的协同效应从协同作用转变为拮抗作用。萨斯喀彻温省苏里斯河的微藻预计将遭受最严重的毒性影响。我们的研究结果对 NPs 的风险管理具有重要意义。