State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511400, Guangdong Province, China.
Department of Radiation Oncology, Southern Theater Air Force Hospital of the People's Liberation Army, Guangzhou 510050, Guangdong Province, China.
Oral Oncol. 2024 Nov;158:107000. doi: 10.1016/j.oraloncology.2024.107000. Epub 2024 Sep 2.
This study aimed to integrate radiomics and dosiomics features to develop a predictive model for xerostomia (XM) in nasopharyngeal carcinoma after radiotherapy. It explores the influence of distinct feature extraction methods and dose ranges on the performance.
Data from 363 patients with nasopharyngeal carcinoma were retrospectively analyzed. We pioneered a dose-segmentation strategy, where the overall dose distribution (OD) was divided into four segmental dose distributions (SDs) at intervals of 15 Gy. Features were extracted using manual definition and deep learning, applying OD or SD and integrating radiomics and dosiomics, yielding corresponding feature scores (manually defined radiomics, MDR; manually defined dosiomics, MDD; deep learning-based radiomics, DLR; deep learning-based dosiomics, DLD). Subsequently, 18 models were developed by combining features and model types (random forest and support vector machine).
Under OD, O(DLR_DLD) demonstrated exceptional performance, with an optimal area under the curve (AUC) of 0.81 and an average AUC of 0.71. Within SD, S(DLR_DLD) surpassed the other models, achieving an optimal AUC of 0.90 and an average AUC of 0.85. Therefore, the integration of dosiomics into radiomics can augment predictive efficacy. The dose-segmentation strategy can facilitate the extraction of more profound information. This indicates that ScoreDLR and ScoreMDR were negatively associated with XM, whereas ScoreDLD, derived from SD exceeding 15 Gy, displayed a positive association with XM. For feature extraction, deep learning was superior to manual definition.
本研究旨在整合放射组学和剂量组学特征,建立预测鼻咽癌放疗后口干症(XM)的模型。探讨不同特征提取方法和剂量范围对模型性能的影响。
回顾性分析 363 例鼻咽癌患者资料。我们首创了一种剂量分段策略,将总剂量分布(OD)在 15 Gy 间隔处分为四个分段剂量分布(SD)。采用手动定义和深度学习方法提取特征,应用 OD 或 SD,整合放射组学和剂量组学,得到相应的特征评分(手动定义放射组学,MDR;手动定义剂量组学,MDD;基于深度学习的放射组学,DLR;基于深度学习的剂量组学,DLD)。然后,通过结合特征和模型类型(随机森林和支持向量机),构建了 18 个模型。
在 OD 下,O(DLR_DLD)表现出色,曲线下面积(AUC)最优为 0.81,平均 AUC 为 0.71。在 SD 内,S(DLR_DLD)优于其他模型,最优 AUC 为 0.90,平均 AUC 为 0.85。因此,将剂量组学纳入放射组学可以提高预测效果。剂量分段策略有助于提取更深入的信息。这表明 ScoreDLR 和 ScoreMDR 与 XM 呈负相关,而源于超过 15 Gy 的 SD 的 ScoreDLD 与 XM 呈正相关。在特征提取方面,深度学习优于手动定义。