Suppr超能文献

基于剂量组学和影像组学的放疗及免疫检查点抑制后肺炎的预测:分割放疗的相关性

Dosiomics and radiomics-based prediction of pneumonitis after radiotherapy and immune checkpoint inhibition: The relevance of fractionation.

作者信息

Kraus Kim Melanie, Oreshko Maksym, Schnabel Julia Anne, Bernhardt Denise, Combs Stephanie Elisabeth, Peeken Jan Caspar

机构信息

Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München (HMGU) GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Partner Site Munich, German Consortium for Translational Cancer Research (DKTK), 80336 Munich, Germany.

Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; Medical Faculty, University Hospital, LMU Munich, 80539 Munich, Germany.

出版信息

Lung Cancer. 2024 Mar;189:107507. doi: 10.1016/j.lungcan.2024.107507. Epub 2024 Feb 17.

Abstract

OBJECTIVES

Post-therapy pneumonitis (PTP) is a relevant side effect of thoracic radiotherapy and immunotherapy with checkpoint inhibitors (ICI). The influence of the combination of both, including dose fractionation schemes on PTP development is still unclear. This study aims to improve the PTP risk estimation after radio(chemo)therapy (R(C)T) for lung cancer with and without ICI by investigation of the impact of dose fractionation on machine learning (ML)-based prediction.

MATERIALS AND METHODS

Data from 100 patients who received fractionated R(C)T were collected. 39 patients received additional ICI therapy. Computed Tomography (CT), RT segmentation and dose data were extracted and physical doses were converted to 2-Gy equivalent doses (EQD2) to account for different fractionation schemes. Features were reduced using Pearson intercorrelation and the Boruta algorithm within 1000-fold bootstrapping. Six single (clinics, Dose Volume Histogram (DVH), ICI, chemotherapy, radiomics, dosiomics) and four combined models (radiomics + dosiomics, radiomics + DVH + Clinics, dosiomics + DVH + Clinics, radiomics + dosiomics + DVH + Clinics) were trained to predict PTP. Dose-based models were tested using physical dose and EQD2. Four ML-algorithms (random forest (rf), logistic elastic net regression, support vector machine, logitBoost) were trained and tested using 5-fold nested cross validation and Synthetic Minority Oversampling Technique (SMOTE) for resampling in R. Prediction was evaluated using the area under the receiver operating characteristic curve (AUC) on the test sets of the outer folds.

RESULTS

The combined model of all features using EQD2 surpassed all other models (AUC = 0.77, Confidence Interval CI 0.76-0.78). DVH, clinical data and ICI therapy had minor impact on PTP prediction with AUC values between 0.42 and 0.57. All EQD2-based models outperformed models based on physical dose.

CONCLUSIONS

Radiomics + dosiomics based ML models combined with clinical and dosimetric models were found to be suited best for PTP prediction after R(C)T and could improve pre-treatment decision making. Different RT dose fractionation schemes should be considered for dose-based ML approaches.

摘要

目的

治疗后肺炎(PTP)是胸部放疗和使用检查点抑制剂(ICI)进行免疫治疗的一种相关副作用。两者联合使用,包括剂量分割方案对PTP发生的影响仍不明确。本研究旨在通过研究剂量分割对基于机器学习(ML)的预测的影响,改进肺癌接受(放)化疗(R(C)T)联合或不联合ICI治疗后的PTP风险估计。

材料与方法

收集了100例接受分割R(C)T治疗的患者的数据。39例患者接受了额外的ICI治疗。提取计算机断层扫描(CT)、放疗分割和剂量数据,并将物理剂量转换为2 Gy等效剂量(EQD2),以考虑不同的分割方案。在1000次自举抽样中,使用Pearson相关性和Boruta算法减少特征。训练六个单一模型(临床指标、剂量体积直方图(DVH)、ICI、化疗、影像组学、剂量组学)和四个联合模型(影像组学 + 剂量组学、影像组学 + DVH + 临床指标、剂量组学 + DVH + 临床指标、影像组学 + 剂量组学 + DVH + 临床指标)来预测PTP。基于剂量的模型使用物理剂量和EQD2进行测试。使用随机森林(rf)、逻辑弹性网络回归、支持向量机、logitBoost这四种机器学习算法,通过5折嵌套交叉验证和合成少数过采样技术(SMOTE)在R中进行训练和测试,并用于重采样。使用测试集外折的受试者工作特征曲线下面积(AUC)评估预测结果。

结果

使用EQD2的所有特征的联合模型超过了所有其他模型(AUC = 0.77,置信区间CI 0.76 - 0.78)。DVH、临床数据和ICI治疗对PTP预测的影响较小,AUC值在0.42至0.57之间。所有基于EQD2的模型均优于基于物理剂量的模型。

结论

发现基于影像组学 + 剂量组学的ML模型与临床和剂量学模型相结合最适合于R(C)T后的PTP预测,并可改善治疗前的决策。基于剂量的ML方法应考虑不同的放疗剂量分割方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验