Suppr超能文献

界面耦合提高 O 吸附并加速电荷分离,以提高 ZnO/ZnInS 复合材料在 HO 生产和环境修复中的光催化性能。

Interface coupling to improve O adsorption and accelerate charge separation for boosting photocatalytic performance of ZnO/ZnInS composite in HO production and environmental remediation.

机构信息

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.

出版信息

J Environ Manage. 2024 Oct;369:122406. doi: 10.1016/j.jenvman.2024.122406. Epub 2024 Sep 3.

Abstract

The key to heterogeneous photo-Fenton technology lies in the efficient generation of hydrogen peroxide (HO). Herein, a newly-designed ZnO/ZnInS composite with heterostructure is synthesized. Benefiting from the formation of built-in electric field, the recombination of photoinduced electrons and holes is suppressed and interfacial charge transfer resistance is reduced. Importantly, the embedding of ZnO in ZnInS can improve the hydrophobicity and create microscopic three-phase interface, thereby boosting the capture capability for O and providing the convenience for the occurrence of O reduction reaction. More interestingly, the existence of ZnInS in the ZnO/ZnInS composite can reduce the Gibbs free energy (ΔG) of key intermediate (OOH*) formation, which will accelerate the generation of HO. As a result, the ZnO/ZnInS composite displays excellent performance in photocatalytic HO production, and the highest yield was about 897.6 μmol/g/h within 60 min under visible light irradiation. The transfer of photoinduced carriers follows the S-scheme type mechanism. The photogenerated holes can be captured by drug residues (i.e., diclofenac sodium) to accelerate HO production, while generated HO can combine with Fe to construct photo-Fenton system for achieving the advanced degradation of diclofenac sodium, which was mainly related to the formation of OH. Furthermore, generated HO can be applied for performing the inactivation of pathogenic bacteria. In short, current work will provide a valuable reference for future research.

摘要

异质光芬顿技术的关键在于过氧化氢(HO)的高效生成。在此,合成了一种具有新型异质结构的 ZnO/ZnInS 复合材料。得益于内置电场的形成,抑制了光生电子和空穴的复合,并降低了界面电荷转移电阻。重要的是,ZnO 嵌入到 ZnInS 中可以提高疏水性并创造微观三相界面,从而增强了对 O 的捕获能力,并为 O 还原反应的发生提供便利。更有趣的是,ZnInS 的存在可以降低 ZnO/ZnInS 复合材料中关键中间体(OOH*)形成的吉布斯自由能(ΔG),从而加速 HO 的生成。结果,ZnO/ZnInS 复合材料在光催化 HO 生成方面表现出优异的性能,在可见光照射下 60 分钟内的最高产率约为 897.6 μmol/g/h。光生载流子的转移遵循 S 型机制。光生空穴可以被药物残留(即双氯芬酸钠)捕获,从而加速 HO 的生成,而生成的 HO 可以与 Fe 结合构建光芬顿体系,实现双氯芬酸钠的高级降解,这主要与 OH 的形成有关。此外,生成的 HO 可用于对致病菌进行失活处理。总之,目前的工作将为未来的研究提供有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验