Zhang Hongwei, Cheng Jiazhe, Liu Kaiyu, Jiang Shou-Xiang, Zhang Jichao, Wang Qian, Lan Chuntao, Jia Hao, Li Zhaoling
School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):950-958. doi: 10.1016/j.jcis.2024.08.216. Epub 2024 Aug 27.
The challenge of achieving high-performance electromagnetic interference (EMI) shielding films, which focuses on electromagnetic waves absorption while maintaining thin thickness, is a crucial endeavor in contemporary electronic device advancement. In this study, we have successfully engineered hybrid films based on MXene nanosheets and FeO nanoparticles, featuring intricate electric-magnetic dual-gradient structures. Through the collaborative influence of a unique dual-gradient structure equipped with transition and reflection layers, these hybrid films demonstrate favorable impedance matching, abundant loss mechanisms (Ohmic loss, interfacial polarization and magnetic loss), and an "absorb-reflect-reabsorb" process to achieve absorption-dominated EMI shielding capability. Compared with the single conductive gradient structure, the dual-gradient structure effectively enhances the absorption intensity per unit thickness, and thus reduces the thickness of the film. The optimized film demonstrates a remarkable EMI shielding effectiveness (SE) of 49.98 dB alongside an enhanced absorption coefficient (A) of 0.51 with a thickness of only 180 μm. The thin films with a dual-gradient structure hold promise for crafting absorption-dominated electromagnetic shielding materials, highlighting the potential for advanced electromagnetic protection solutions.
实现高性能电磁干扰(EMI)屏蔽薄膜面临着挑战,即在保持薄膜厚度的同时专注于电磁波吸收,这是当代电子设备发展中的一项关键工作。在本研究中,我们成功制备了基于MXene纳米片和FeO纳米颗粒的混合薄膜,其具有复杂的电磁双梯度结构。通过具有过渡层和反射层的独特双梯度结构的协同作用,这些混合薄膜展现出良好的阻抗匹配、丰富的损耗机制(欧姆损耗、界面极化和磁损耗)以及“吸收-反射-再吸收”过程,以实现以吸收为主的EMI屏蔽能力。与单一导电梯度结构相比,双梯度结构有效提高了单位厚度的吸收强度,从而减小了薄膜的厚度。优化后的薄膜在仅180μm的厚度下展现出49.98dB的显著电磁干扰屏蔽效能(SE)以及0.51的增强吸收系数(A)。具有双梯度结构的薄膜有望用于制备以吸收为主的电磁屏蔽材料,凸显了先进电磁防护解决方案的潜力。