Suppr超能文献

一种统一的药物聚合物溶解度预测方法:简化实验工作流程和分析。

A unifying approach to drug-in-polymer solubility prediction: Streamlining experimental workflow and analysis.

机构信息

Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.

出版信息

Eur J Pharm Biopharm. 2024 Oct;203:114478. doi: 10.1016/j.ejpb.2024.114478. Epub 2024 Sep 1.

Abstract

This method paper describes currently used experimental methods to predict the drug-in-polymer solubility of amorphous solid dispersions and offers a combined approach for applying the Melting-point-depression method, the Recrystallization method, and the Melting-and-mixing method. It aims to describe and expand on the theoretical basis as well as the analytical methodology of the recently published Melting-and-mixing method. This solubility method relies on determining the relationship between drug loads and the enthalpy of melting and mixing of a crystalline drug in the presence of an amorphous polymer. This relationship is used to determine the soluble drug load of an amorphous solid dispersion from the recorded enthalpy of melting and mixing of the crystalline drug portion in a drug-polymer sample at equilibrium solubility. Due to the complex analytical methodology of the Melting-and-mixing method, a software solution called the Glass Solution Companion app was developed. Using this new tool, it is possible to calculate the predicted drug-in-polymer solubility and Flory-Huggins interaction parameter from experimental samples, as well as to generate the resulting solubility-temperature curve. This software can be used for calculations for all three experimental methods, which would be useful for comparing the applicability of the methods on a given drug-polymer system. Since it is difficult to predict the suitability of these drug-in-polymer solubility methods for a specific drug-polymer system in silico, some experimental investigation is necessary. By optimizing the experimental protocol, it is possible to collect data for the three experimental methods simultaneously for a specific drug-polymer system. These results can then be readily analyzed using the Glass Solution Companion app to find the most appropriate method for the drug-polymer system, and therefore, the most reliable drug-in-polymer solubility prediction.

摘要

本文介绍了目前用于预测无定形固体分散体中药物-聚合物溶解度的实验方法,并提供了一种组合方法,用于应用熔点降低法、重结晶法和熔融混合法。其目的是描述和扩展最近发表的熔融混合法的理论基础和分析方法。这种溶解度方法依赖于确定药物负载与存在无定形聚合物时晶态药物熔融和混合焓之间的关系。该关系用于从药物-聚合物样品在平衡溶解度下晶态药物部分的熔融和混合焓的记录值确定无定形固体分散体的可溶性药物负载。由于熔融混合法的分析方法复杂,因此开发了一种名为“Glass Solution Companion app”的软件解决方案。使用这个新工具,可以从实验样品中计算预测的药物-聚合物溶解度和 Flory-Huggins 相互作用参数,并生成相应的溶解度-温度曲线。该软件可用于所有三种实验方法的计算,这对于比较给定药物-聚合物系统中方法的适用性非常有用。由于很难在计算机上预测这些药物-聚合物溶解度方法对特定药物-聚合物系统的适用性,因此需要进行一些实验研究。通过优化实验方案,可以同时为特定的药物-聚合物系统收集三种实验方法的数据。然后可以使用 Glass Solution Companion app 轻松分析这些结果,以找到最适合药物-聚合物系统的方法,从而获得最可靠的药物-聚合物溶解度预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验